Source code for gammapy.time.models

# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
from astropy import units as u
from ..utils.modeling import Parameter, ParameterList

__all__ = [
    'PhaseCurve',
]


[docs]class PhaseCurve(object): """Temporal phase curve model. Phase for a given time is computed as .. math:: \phi(t) = \phi_0 + f_0(t-t_0) + (1/2)f_1(t-t_0)^2 + (1/6)f_2(t-t_0)^3 Strictly periodic sources such as gamma-ray binaries have ``f1=0`` and ``f2=0``. Sources like some pulsars where the period spins up or down have ``f1!=0`` and / or ``f2 !=0``. For a binary, ``f0`` should be calculated as 1/T, where T is the period of the binary in unit of ``seconds``. The "phase curve", i.e. multiplicative flux factor for a given phase is given by a `~astropy.table.Table` of nodes ``(phase, norm)``, using linear interpolation and circular behaviour, where ``norm(phase=0) == norm(phase=1)``. Parameters ---------- table : `~astropy.table.Table` A table of 'PHASE' vs 'NORM' should be given time_0 : float The MJD value where phase is considered as 0. phase_0 : float Phase at the reference MJD f0, f1, f2 : float Derivatives of the function phi with time of order 1, 2, 3 in units of ``s^-1, s^-2 & s^-3``, respectively. Examples -------- Create an example phase curve object:: from astropy.table import Table from gammapy.utils.scripts import make_path from gammapy.time.models import PhaseCurve filename = make_path('$GAMMAPY_EXTRA/test_datasets/phasecurve_LSI_DC.fits') table = Table.read(str(filename)) phase_curve = PhaseCurve(table, time_0=43366.275, phase_0=0.0, f0=4.367575e-7, f1=0.0, f2=0.0) Use it to compute a phase and evaluate the phase curve model for a given time: >>> phase_curve.phase(time=46300.0) 0.7066006737999402 >>> phase_curve.evaluate_norm_at_time(46300) 0.49059393580053845 """ def __init__(self, table, time_0, phase_0, f0, f1, f2): self.table = table self.parameters = ParameterList([ Parameter('time_0', time_0), Parameter('phase_0', phase_0), Parameter('f0', f0), Parameter('f1', f1), Parameter('f2', f2)] )
[docs] def phase(self, time): """Evaluate phase for a given time. Parameters ---------- time : array_like Returns ------- phase : array_like """ pars = self.parameters time_0 = pars['time_0'].value phase_0 = pars['phase_0'].value f0 = pars['f0'].value f1 = pars['f1'].value f2 = pars['f2'].value t = (time - time_0) * u.day.to(u.second) phase = self._evaluate_phase(t, phase_0, f0, f1, f2) return np.remainder(phase, 1)
@staticmethod def _evaluate_phase(t, phase_0, f0, f1, f2): return phase_0 + t * (f0 + t * (f1 / 2 + f2 / 6 * t))
[docs] def evaluate_norm_at_time(self, time): """Evaluate for a given time. Parameters ---------- time : array_like Time since the ``reference`` time. Returns ------- norm : array_like """ phase = self.phase(time) return self.evaluate_norm_at_phase(phase)
[docs] def evaluate_norm_at_phase(self, phase): xp = self.table['PHASE'] fp = self.table['NORM'] return np.interp(x=phase, xp=xp, fp=fp, period=1)