EnergyOffsetArray¶
-
class
gammapy.background.EnergyOffsetArray(energy, offset, data=None, data_units='', data_err=None)[source]¶ Bases:
objectEnergy offset dependent array.
TODO: take quantity
datain__init__instead ofdataanddata_unitsseparately.Parameters: energy :
EnergyBoundsEnergy bounds vector (1D)
offset :
AngleOffset vector (1D)
data :
ndarray, optionalData array (2D)
data_err :
ndarray, optionalData array (2D) containing the errors on the data
Attributes Summary
bin_volumePer-pixel bin volume (solid angle * energy). offset_bin_centerOffset bin center location (1D Anglein deg).solid_angleSolid angle for each offset bin (1D Quantityin sr).Methods Summary
acceptance_curve_in_energy_band(energy_band)Compute acceptance curve in energy band. evaluate([energy, offset, interp_kwargs])Interpolate at a given offset and energy. evaluate_at_energy(energy[, interp_kwargs])Evaluate at one given energy. evaluate_at_offset(offset[, interp_kwargs])Evaluate at one given offset. fill_events(event_lists)Fill events histogram. from_table(table[, data_name])Create from Table.plot([ax])Plot Energy_offset Array image (x=offset, y=energy). read(filename[, hdu, data_name])Read from FITS file. to_cube([coordx_edges, coordy_edges, …])Transform into a FOVCube.to_table([data_name])Convert to Table.write(filename[, data_name])Write to FITS file. Attributes Documentation
Methods Documentation
-
acceptance_curve_in_energy_band(energy_band, energy_bins=10, interp_kwargs=None)[source]¶ Compute acceptance curve in energy band.
Evaluate the
EnergyOffsetArrayat different energies in the energy_band. Then integrate them in order to get the total acceptance curveParameters: energy_band :
QuantityTuple
(energy_min, energy_max)energy_bins : int or
QuantityEnergy bin definition.
interp_kwargs : dict
option for interpolation for
RegularGridInterpolatorReturns: table :
Tabletwo column: offset and integral values (units = self.data.unit * self.energy.units)
-
evaluate(energy=None, offset=None, interp_kwargs=None)[source]¶ Interpolate at a given offset and energy.
Parameters: energy :
Quantityenergy value
offset :
Angleoffset value
interp_kwargs : dict
option for interpolation for
RegularGridInterpolatorReturns: values :
QuantityInterpolated value
-
evaluate_at_energy(energy, interp_kwargs=None)[source]¶ Evaluate at one given energy.
Parameters: energy :
QuantityEnergy
interp_kwargs : dict
Option for interpolation for
RegularGridInterpolatorReturns: table :
TableTable with two columns: offset, value
-
evaluate_at_offset(offset, interp_kwargs=None)[source]¶ Evaluate at one given offset.
Parameters: offset :
AngleOffset angle
interp_kwargs : dict
option for interpolation for
RegularGridInterpolatorReturns: table :
TableTable with two columns: energy, value
-
fill_events(event_lists)[source]¶ Fill events histogram.
This add the counts to the existing value array.
Parameters: event_lists : list of
EventListPython list of event list objects.
-
classmethod
from_table(table, data_name='data')[source]¶ Create from
Table.Parameters: table :
TableTable
data_name : str
Name of the data column in the table
-
classmethod
read(filename, hdu='bkg_2d', data_name='data')[source]¶ Read from FITS file.
Parameters: filename : str
File name
hdu : str
HDU name
data_name : str
Name of the data column in the table
-
to_cube(coordx_edges=None, coordy_edges=None, energy_edges=None, interp_kwargs=None)[source]¶ Transform into a
FOVCube.Parameters: coordx_edges :
Angle, optionalSpatial bin edges vector (low and high). X coordinate.
coordy_edges :
Angle, optionalSpatial bin edges vector (low and high). Y coordinate.
energy_edges :
EnergyBounds, optionalEnergy bin edges vector (low and high).
interp_kwargs : dict
option for interpolation for
RegularGridInterpolatorReturns: cube :
FOVCubeFOVCube
-