ASmooth¶
-
class
gammapy.image.ASmooth(kernel=<class 'astropy.convolution.kernels.Gaussian2DKernel'>, method='simple', threshold=5, scales=None)[source]¶ Bases:
objectAdaptively smooth counts image.
Achieves a roughly constant significance of features across the whole image.
Algorithm based on http://adsabs.harvard.edu/abs/2006MNRAS.368…65E
The algorithm was slightly adapted to also allow Li & Ma and TS to estimate the significance of a feature in the image.
Parameters: kernel :
astropy.convolution.KernelSmoothing kernel.
method : {‘simple’, ‘asmooth’, ‘lima’}
Significance estimation method.
threshold : float
Significance threshold.
scales :
QuantitySmoothing scales.
Methods Summary
kernels(image)Ring kernels according to the specified method. run(images)Run image smoothing. Methods Documentation
-
kernels(image)[source]¶ Ring kernels according to the specified method.
Parameters: image :
SkyImageSky image specifying the WCS information.
Returns: kernels : list
List of
Kernel
-
run(images)[source]¶ Run image smoothing.
Parameters: images :
SkyImageListList of input sky images.
Returns: smoothed :
SkyImageList- List of smoothed sky images containing:
- ‘counts’
- ‘background’
- ‘flux’ (optional)
- ‘scales’
- ‘significance’.
-