significance¶
-
gammapy.stats.
significance
(n_on, mu_bkg, method='lima', n_on_min=1)[source]¶ Compute significance for an observed number of counts and known background.
The simple significance estimate \(S_{simple}\) is given by
\[S_{simple} = (n_{on} - \mu_{bkg}) / \sqrt{\mu_{bkg}}\]The Li & Ma significance estimate corresponds to the Li & Ma formula (17) in the limiting case of known background \(\mu_{bkg} = \alpha \times n_{off}\) with \(\alpha \to 0\). The following formula for \(S_{lima}\) was obtained with Mathematica:
\[S_{lima} = \left[ 2 n_{on} \log \left( \frac{n_{on}}{\mu_{bkg}} \right) - n_{on} + \mu_{bkg} \right] ^ {1/2}\]Parameters: n_on : array_like
Observed number of counts
mu_bkg : array_like
Known background level
method : str
Select method: ‘lima’ or ‘simple’
n_on_min : float
Minimum
n_on
(returnNaN
for smaller values)Returns: significance : ndarray
Significance according to the method chosen.
See also
References
[R2121] Li and Ma, “Analysis methods for results in gamma-ray astronomy”, Link Examples
>>> significance(n_on=11, mu_bkg=9, method='lima') 0.64401498442763649 >>> significance(n_on=11, mu_bkg=9, method='simple') 0.66666666666666663 >>> significance(n_on=7, mu_bkg=9, method='lima') -0.69397262486881672 >>> significance(n_on=7, mu_bkg=9, method='simple') -0.66666666666666663