Source code for gammapy.astro.population.velocity

# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Pulsar velocity distribution models."""
import numpy as np
from astropy.modeling import Fittable1DModel, Parameter
from astropy.units import Quantity

__all__ = [
    "FaucherKaspi2006VelocityBimodal",
    "FaucherKaspi2006VelocityMaxwellian",
    "Paczynski1990Velocity",
    "velocity_distributions",
]

# Simulation range used for random number drawing
VMIN, VMAX = Quantity([0, 4000], "km/s")


[docs]class FaucherKaspi2006VelocityMaxwellian(Fittable1DModel): r"""Maxwellian pulsar velocity distribution. .. math:: f(v) = A \sqrt{ \frac{2}{\pi}} \frac{v ^ 2}{\sigma ^ 3 } \exp \left(-\frac{v ^ 2}{2 \sigma ^ 2} \right) Reference: https://ui.adsabs.harvard.edu/abs/2006ApJ...643..332F Parameters ---------- amplitude : float Value of the integral sigma : float Velocity parameter (km s^-1) """ amplitude = Parameter() sigma = Parameter() def __init__(self, amplitude=1, sigma=265, **kwargs): super().__init__(amplitude=amplitude, sigma=sigma, **kwargs)
[docs] @staticmethod def evaluate(v, amplitude, sigma): """One dimensional velocity model function.""" term1 = np.sqrt(2 / np.pi) * v**2 / sigma**3 term2 = np.exp(-(v**2) / (2 * sigma**2)) return term1 * term2
[docs]class FaucherKaspi2006VelocityBimodal(Fittable1DModel): r"""Bimodal pulsar velocity distribution - Faucher & Kaspi (2006). .. math:: f(v) = A\sqrt{\frac{2}{\pi}} v^2 \left[\frac{w}{\sigma_1^3} \exp \left(-\frac{v^2}{2\sigma_1^2} \right) + \frac{1-w}{\sigma_2^3} \exp \left(-\frac{v^2}{2\sigma_2^2} \right) \right] Reference: https://ui.adsabs.harvard.edu/abs/2006ApJ...643..332F (Formula (7)) Parameters ---------- amplitude : float Value of the integral sigma1 : float See model formula sigma2 : float See model formula w : float See model formula """ amplitude = Parameter() sigma_1 = Parameter() sigma_2 = Parameter() w = Parameter() def __init__(self, amplitude=1, sigma_1=160, sigma_2=780, w=0.9, **kwargs): super().__init__( amplitude=amplitude, sigma_1=sigma_1, sigma_2=sigma_2, w=w, **kwargs )
[docs] @staticmethod def evaluate(v, amplitude, sigma_1, sigma_2, w): """One dimensional Faucher-Guigere & Kaspi 2006 velocity model function.""" A = amplitude * np.sqrt(2 / np.pi) * v**2 term1 = (w / sigma_1**3) * np.exp(-(v**2) / (2 * sigma_1**2)) term2 = (1 - w) / sigma_2**3 * np.exp(-(v**2) / (2 * sigma_2**2)) return A * (term1 + term2)
[docs]class Paczynski1990Velocity(Fittable1DModel): r"""Distribution by Lyne 1982 and adopted by Paczynski and Faucher. .. math:: f(v) = A\frac{4}{\pi} \frac{1}{v_0 \left[1 + (v / v_0) ^ 2 \right] ^ 2} Reference: https://ui.adsabs.harvard.edu/abs/1990ApJ...348..485P (Formula (3)) Parameters ---------- amplitude : float Value of the integral v_0 : float Velocity parameter (km s^-1) """ amplitude = Parameter() v_0 = Parameter() def __init__(self, amplitude=1, v_0=560, **kwargs): super().__init__(amplitude=amplitude, v_0=v_0, **kwargs)
[docs] @staticmethod def evaluate(v, amplitude, v_0): """One dimensional Paczynski 1990 velocity model function.""" return amplitude * 4.0 / (np.pi * v_0 * (1 + (v / v_0) ** 2) ** 2)
"""Velocity distributions (dict mapping names to classes).""" velocity_distributions = { "H05": FaucherKaspi2006VelocityMaxwellian, "F06B": FaucherKaspi2006VelocityBimodal, "F06P": Paczynski1990Velocity, }