Source code for gammapy.modeling.models.spectral_cosmic_ray

# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Simple models for cosmic ray spectra at Earth.

For measurements, the "Database of Charged Cosmic Rays (CRDB)" is a great resource:
http://lpsc.in2p3.fr/cosmic-rays-db/
"""
import numpy as np
from astropy import units as u
from gammapy.modeling import Parameter
from .spectral import PowerLawSpectralModel, SpectralModel

__all__ = [
    "create_cosmic_ray_spectral_model",
]


class _LogGaussianSpectralModel(SpectralModel):
    r"""Log Gaussian spectral model with a weird parametrisation.

    This should not be exposed to end-users as a Gammapy spectral model!
    See Table 3 in https://ui.adsabs.harvard.edu/abs/2013APh....43..171B
    """

    L = Parameter("L", 1e-12 * u.Unit("cm-2 s-1"))
    Ep = Parameter("Ep", 0.107 * u.TeV)
    w = Parameter("w", 0.776)

    @staticmethod
    def evaluate(energy, L, Ep, w):
        return (
            L
            / (energy * w * np.sqrt(2 * np.pi))
            * np.exp(-((np.log(energy / Ep)) ** 2) / (2 * w**2))
        )


[docs]def create_cosmic_ray_spectral_model(particle="proton"): """Cosmic a cosmic ray spectral model at Earth. These are the spectra assumed in this CTA study: Table 3 in https://ui.adsabs.harvard.edu/abs/2013APh....43..171B The spectrum given is a differential flux ``dnde`` in units of ``cm-2 s-1 TeV-1``, as the value integrated over the whole sky. To get a surface brightness you need to compute ``dnde / (4 * np.pi * u.sr)``. To get the ``dnde`` in a region of solid angle ``omega``, you need to compute ``dnde * omega / (4 * np.pi * u.sr)``. The hadronic spectra are simple power-laws, the electron spectrum is the sum of a power law and a log-normal component to model the "Fermi shoulder". Parameters ---------- particle : {'electron', 'proton', 'He', 'N', 'Si', 'Fe'} Particle type Returns ------- `~gammapy.modeling.models.SpectralModel` Spectral model (for all-sky cosmic ray flux) """ omega = 4 * np.pi * u.sr if particle == "proton": return PowerLawSpectralModel( amplitude=0.096 * u.Unit("1 / (m2 s TeV sr)") * omega, index=2.70, reference=1 * u.TeV, ) elif particle == "N": return PowerLawSpectralModel( amplitude=0.0719 * u.Unit("1 / (m2 s TeV sr)") * omega, index=2.64, reference=1 * u.TeV, ) elif particle == "Si": return PowerLawSpectralModel( amplitude=0.0284 * u.Unit("1 / (m2 s TeV sr)") * omega, index=2.66, reference=1 * u.TeV, ) elif particle == "Fe": return PowerLawSpectralModel( amplitude=0.0134 * u.Unit("1 / (m2 s TeV sr)") * omega, index=2.63, reference=1 * u.TeV, ) elif particle == "electron": return PowerLawSpectralModel( amplitude=6.85e-5 * u.Unit("1 / (m2 s TeV sr)") * omega, index=3.21, reference=1 * u.TeV, ) + _LogGaussianSpectralModel(L=3.19e-3 * u.Unit("1 / (m2 s sr)") * omega) else: raise ValueError(f"Invalid particle: {particle!r}")