# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Time-dependent models."""
import logging
import numpy as np
import scipy.interpolate
from astropy import units as u
from astropy.table import Table
from astropy.time import Time
from astropy.utils import lazyproperty
from gammapy.maps import MapAxis, RegionNDMap, TimeMapAxis
from gammapy.modeling import Parameter
from gammapy.utils.random import InverseCDFSampler, get_random_state
from gammapy.utils.scripts import make_path
from gammapy.utils.time import time_ref_from_dict
from .core import ModelBase, _build_parameters_from_dict
__all__ = [
"ConstantTemporalModel",
"ExpDecayTemporalModel",
"GaussianTemporalModel",
"GeneralizedGaussianTemporalModel",
"LightCurveTemplateTemporalModel",
"LinearTemporalModel",
"PowerLawTemporalModel",
"SineTemporalModel",
"TemplatePhaseCurveTemporalModel",
"TemporalModel",
]
log = logging.getLogger(__name__)
# TODO: make this a small ABC to define a uniform interface.
[docs]class TemporalModel(ModelBase):
"""Temporal model base class.
Evaluates on astropy.time.Time objects"""
_type = "temporal"
[docs] def __call__(self, time):
"""Evaluate model
Parameters
----------
time : `~astropy.time.Time`
Time object
"""
kwargs = {par.name: par.quantity for par in self.parameters}
time = u.Quantity(time.mjd, "day")
return self.evaluate(time, **kwargs)
@property
def type(self):
return self._type
[docs] @staticmethod
def time_sum(t_min, t_max):
"""Total time between t_min and t_max
Parameters
----------
t_min, t_max : `~astropy.time.Time`
Lower and upper bound of integration range
Returns
-------
time_sum : `~astropy.time.TimeDelta`
Summed time in the intervals.
"""
diff = t_max - t_min
# TODO: this is a work-around for https://github.com/astropy/astropy/issues/10501
return u.Quantity(np.sum(diff.to_value("day")), "day")
[docs] def plot(self, time_range, ax=None, n_points=100, **kwargs):
"""
Plot Temporal Model.
Parameters
----------
time_range : `~astropy.time.Time`
times to plot the model
ax : `~matplotlib.axes.Axes`, optional
Axis to plot on
n_points : int
Number of bins to plot model
**kwargs : dict
Keywords forwarded to `~matplotlib.pyplot.errorbar`
Returns
-------
ax : `~matplotlib.axes.Axes`, optional
axis
"""
time_min, time_max = time_range
time_axis = TimeMapAxis.from_time_bounds(
time_min=time_min, time_max=time_max, nbin=n_points
)
m = RegionNDMap.create(region=None, axes=[time_axis])
kwargs.setdefault("marker", "None")
kwargs.setdefault("ls", "-")
kwargs.setdefault("xerr", None)
m.quantity = self(time_axis.time_mid)
ax = m.plot(ax=ax, **kwargs)
ax.set_ylabel("Norm / A.U.")
return ax
[docs] def sample_time(self, n_events, t_min, t_max, t_delta="1 s", random_state=0):
"""Sample arrival times of events.
Parameters
----------
n_events : int
Number of events to sample.
t_min : `~astropy.time.Time`
Start time of the sampling.
t_max : `~astropy.time.Time`
Stop time of the sampling.
t_delta : `~astropy.units.Quantity`
Time step used for sampling of the temporal model.
random_state : {int, 'random-seed', 'global-rng', `~numpy.random.RandomState`}
Defines random number generator initialisation.
Passed to `~gammapy.utils.random.get_random_state`.
Returns
-------
time : `~astropy.units.Quantity`
Array with times of the sampled events.
"""
t_min = Time(t_min)
t_max = Time(t_max)
t_delta = u.Quantity(t_delta)
random_state = get_random_state(random_state)
ontime = u.Quantity((t_max - t_min).sec, "s")
time_unit = (
u.Unit(self.table.meta["TIMEUNIT"])
if hasattr(self, "table")
else ontime.unit
)
t_step = t_delta.to_value(time_unit)
t_step = (t_step * u.s).to("d")
t = Time(np.arange(t_min.mjd, t_max.mjd, t_step.value), format="mjd")
pdf = self(t)
sampler = InverseCDFSampler(pdf=pdf, random_state=random_state)
time_pix = sampler.sample(n_events)[0]
time = (
np.interp(time_pix, np.arange(len(t)), t.value - min(t.value)) * t_step.unit
).to(time_unit)
return t_min + time
[docs] def integral(self, t_min, t_max, oversampling_factor=100, **kwargs):
"""Evaluate the integrated flux within the given time intervals
Parameters
----------
t_min: `~astropy.time.Time`
Start times of observation
t_max: `~astropy.time.Time`
Stop times of observation
oversampling_factor : int
Oversampling factor to be used for numerical integration.
Returns
-------
norm : float
Integrated flux norm on the given time intervals
"""
t_values, steps = np.linspace(
t_min.mjd, t_max.mjd, oversampling_factor, retstep=True, axis=-1
)
times = Time(t_values, format="mjd")
values = self(times)
integral = np.sum(values, axis=-1) * steps
return integral / self.time_sum(t_min, t_max).to_value("d")
[docs]class ConstantTemporalModel(TemporalModel):
"""Constant temporal model.
For more information see :ref:`constant-temporal-model`.
"""
tag = ["ConstantTemporalModel", "const"]
[docs] @staticmethod
def evaluate(time):
"""Evaluate at given times."""
return np.ones(time.shape)
[docs] def integral(self, t_min, t_max):
"""Evaluate the integrated flux within the given time intervals
Parameters
----------
t_min : `~astropy.time.Time`
Start times of observation
t_max : `~astropy.time.Time`
Stop times of observation
Returns
-------
norm : `~astropy.units.Quantity`
Integrated flux norm on the given time intervals
"""
return (t_max - t_min) / self.time_sum(t_min, t_max)
[docs]class LinearTemporalModel(TemporalModel):
"""Temporal model with a linear variation.
For more information see :ref:`linear-temporal-model`.
Parameters
----------
alpha : float
Constant term of the baseline flux
beta : `~astropy.units.Quantity`
Time variation coefficient of the flux
t_ref : `~astropy.units.Quantity`
The reference time in mjd. Frozen per default, at 2000-01-01.
"""
tag = ["LinearTemporalModel", "linear"]
alpha = Parameter("alpha", 1.0, frozen=False)
beta = Parameter("beta", 0.0, unit="d-1", frozen=False)
_t_ref_default = Time("2000-01-01")
t_ref = Parameter("t_ref", _t_ref_default.mjd, unit="day", frozen=True)
[docs] @staticmethod
def evaluate(time, alpha, beta, t_ref):
"""Evaluate at given times"""
return alpha + beta * (time - t_ref)
[docs] def integral(self, t_min, t_max):
"""Evaluate the integrated flux within the given time intervals
Parameters
----------
t_min : `~astropy.time.Time`
Start times of observation
t_max : `~astropy.time.Time`
Stop times of observation
Returns
-------
norm : float
Integrated flux norm on the given time intervals
"""
pars = self.parameters
alpha = pars["alpha"]
beta = pars["beta"].quantity
t_ref = Time(pars["t_ref"].quantity, format="mjd")
value = alpha * (t_max - t_min) + beta / 2.0 * (
(t_max - t_ref) * (t_max - t_ref) - (t_min - t_ref) * (t_min - t_ref)
)
return value / self.time_sum(t_min, t_max)
[docs]class ExpDecayTemporalModel(TemporalModel):
r"""Temporal model with an exponential decay.
For more information see :ref:`expdecay-temporal-model`.
Parameters
----------
t0 : `~astropy.units.Quantity`
Decay time scale
t_ref : `~astropy.units.Quantity`
The reference time in mjd. Frozen per default, at 2000-01-01 .
"""
tag = ["ExpDecayTemporalModel", "exp-decay"]
t0 = Parameter("t0", "1 d", frozen=False)
_t_ref_default = Time("2000-01-01")
t_ref = Parameter("t_ref", _t_ref_default.mjd, unit="day", frozen=True)
[docs] @staticmethod
def evaluate(time, t0, t_ref):
"""Evaluate at given times"""
return np.exp(-(time - t_ref) / t0)
[docs] def integral(self, t_min, t_max):
"""Evaluate the integrated flux within the given time intervals
Parameters
----------
t_min : `~astropy.time.Time`
Start times of observation
t_max : `~astropy.time.Time`
Stop times of observation
Returns
-------
norm : float
Integrated flux norm on the given time intervals
"""
pars = self.parameters
t0 = pars["t0"].quantity
t_ref = Time(pars["t_ref"].quantity, format="mjd")
value = self.evaluate(t_max, t0, t_ref) - self.evaluate(t_min, t0, t_ref)
return -t0 * value / self.time_sum(t_min, t_max)
[docs]class GaussianTemporalModel(TemporalModel):
r"""A Gaussian temporal profile
For more information see :ref:`gaussian-temporal-model`.
Parameters
----------
t_ref : `~astropy.units.Quantity`
The reference time in mjd at the peak.
sigma : `~astropy.units.Quantity`
Width of the gaussian profile.
"""
tag = ["GaussianTemporalModel", "gauss"]
_t_ref_default = Time("2000-01-01")
t_ref = Parameter("t_ref", _t_ref_default.mjd, unit="day", frozen=False)
sigma = Parameter("sigma", "1 d", frozen=False)
[docs] @staticmethod
def evaluate(time, t_ref, sigma):
return np.exp(-((time - t_ref) ** 2) / (2 * sigma**2))
[docs] def integral(self, t_min, t_max, **kwargs):
"""Evaluate the integrated flux within the given time intervals
Parameters
----------
t_min : `~astropy.time.Time`
Start times of observation
t_max : `~astropy.time.Time`
Stop times of observation
Returns
-------
norm : float
Integrated flux norm on the given time intervals
"""
pars = self.parameters
sigma = pars["sigma"].quantity
t_ref = Time(pars["t_ref"].quantity, format="mjd")
norm = np.sqrt(np.pi / 2) * sigma
u_min = (t_min - t_ref) / (np.sqrt(2) * sigma)
u_max = (t_max - t_ref) / (np.sqrt(2) * sigma)
integral = norm * (scipy.special.erf(u_max) - scipy.special.erf(u_min))
return integral / self.time_sum(t_min, t_max)
[docs]class GeneralizedGaussianTemporalModel(TemporalModel):
r"""A generalized Gaussian temporal profile
For more information see :ref:`generalized-gaussian-temporal-model`.
Parameters
----------
t_ref : `~astropy.units.Quantity`
The time of the pulse's maximum intensity.
t_rise : `~astropy.units.Quantity`
Rise time constant.
t_decay : `~astropy.units.Quantity`
Decay time constant.
eta : `~astropy.units.Quantity`
Inverse pulse sharpness -> higher values implies a more peaked pulse
"""
tag = ["GeneralizedGaussianTemporalModel", "gengauss"]
_t_ref_default = Time("2000-01-01")
t_ref = Parameter("t_ref", _t_ref_default.mjd, unit="day", frozen=False)
t_rise = Parameter("t_rise", "1d", frozen=False)
t_decay = Parameter("t_decay", "1d", frozen=False)
eta = Parameter("eta", 1 / 2, unit="", frozen=False)
[docs] @staticmethod
def evaluate(time, t_ref, t_rise, t_decay, eta):
val_rise = np.exp(
-0.5
* (np.abs(u.Quantity(time - t_ref, "d")) ** (1 / eta))
/ (t_rise ** (1 / eta))
)
val_decay = np.exp(
-0.5
* (np.abs(u.Quantity(time - t_ref, "d")) ** (1 / eta))
/ (t_decay ** (1 / eta))
)
val = np.where(time < t_ref, val_rise, val_decay)
return val
[docs]class LightCurveTemplateTemporalModel(TemporalModel):
"""Temporal light curve model.
The lightcurve is given at specific times (and optionally energies) as a ``norm``
It can be serialised either as an astropy table or a `~gammapy.maps.RegionNDMap`
The ``norm`` is supposed to be a unit-less multiplicative factor in the model,
to be multiplied with a spectral model.
The model does linear interpolation for times between the given ``(time, energy, norm)``
values.
For more information see :ref:`LightCurve-temporal-model`.
Examples
--------
Read an example light curve object:
>>> from gammapy.modeling.models import LightCurveTemplateTemporalModel
>>> path = '$GAMMAPY_DATA/tests/models/light_curve/lightcrv_PKSB1222+216.fits'
>>> light_curve = LightCurveTemplateTemporalModel.read(path)
Show basic information about the lightcurve:
>>> print(light_curve)
LightCurveTemplateTemporalModel model summary:
Reference time: 59000.5 MJD
Start time: 59000.5 MJD
End time: 61862.5 MJD
Norm min: 0.01551196351647377
Norm max: 1.0
<BLANKLINE>
Compute ``norm`` at a given time:
>>> t = Time(59001.195, format="mjd")
>>> light_curve.evaluate(t)
array(0.02287888)
Compute mean ``norm`` in a given time interval:
>>> from astropy.time import Time
>>> import astropy.units as u
>>> t_r = Time(59000.5, format='mjd')
>>> t_min = t_r + [1, 4, 8] * u.d
>>> t_max = t_r + [1.5, 6, 9] * u.d
>>> light_curve.integral(t_min, t_max)
array([0.0074388942, 0.0071144081, 0.0068115544])
"""
tag = ["LightCurveTemplateTemporalModel", "template"]
_t_ref_default = Time("2000-01-01")
t_ref = Parameter("t_ref", _t_ref_default.mjd, unit="day", frozen=False)
def __init__(self, map, t_ref=None, filename=None):
if (map.data < 0).any():
log.warning("Map has negative values. Check and fix this!")
if map.geom.has_energy_axis:
raise NotImplementedError(
"LightCurveTemplateTemporalModel does not"
f" support energy axis, got {map.geom.axes.names}"
)
self.map = map.copy()
super().__init__()
if t_ref:
self.t_ref.value = Time(t_ref, format="mjd").mjd
self.filename = filename
def __str__(self):
start_time = self.t_ref.quantity + self.map.geom.axes["time"].edges[0]
end_time = self.t_ref.quantity + self.map.geom.axes["time"].edges[-1]
norm_min = np.min(self.map.data)
norm_max = np.max(self.map.data)
prnt = (
f"{self.__class__.__name__} model summary:\n "
f"Reference time: {self.t_ref.value} MJD \n "
f"Start time: {start_time.value} MJD \n "
f"End time: {end_time.value} MJD \n "
f"Norm min: {norm_min} \n"
f"Norm max: {norm_max}"
)
return prnt
[docs] @classmethod
def from_table(cls, table, filename=None):
"""Create a template model from an astropy table
Parameters
----------
table : `~astropy.table.Table`
Table containing the template model.
filename : str
Name of input file
Returns
-------
model : `LightCurveTemplateTemporalModel`
Light curve template model
"""
columns = [_.lower() for _ in table.colnames]
if "time" not in columns:
raise ValueError("A TIME column is necessary")
t_ref = time_ref_from_dict(table.meta)
nodes = table["TIME"]
time_axis = MapAxis.from_nodes(
nodes=nodes, name="time", unit=table.meta["TIMEUNIT"]
)
axes = [time_axis]
m = RegionNDMap.create(
region=None, axes=axes, meta=table.meta, data=table["NORM"]
)
return cls(m, t_ref=t_ref, filename=filename)
[docs] @classmethod
def read(cls, filename, format="table"):
"""Read a template model
Parameters
----------
filename : str
Name of file to read
format : {"table", "map"}
Format of the input file.
Returns
-------
model : `LightCurveTemplateTemporalModel`
Light curve template model
"""
filename = str(make_path(filename))
if format == "table":
table = Table.read(filename)
return cls.from_table(table, filename=filename)
elif format == "map":
m = RegionNDMap.read(filename)
t_ref = time_ref_from_dict(m.meta)
return cls(m, t_ref=t_ref, filename=filename)
else:
raise ValueError(
f"Not a valid format: '{format}', choose from: {'table', 'map'}"
)
[docs] def to_table(self):
"""Convert model to an astropy table"""
table = Table(
data=[self.map.geom.axes["time"].center, self.map.quantity],
names=["TIME", "NORM"],
meta=self.map.meta,
)
return table
[docs] def write(self, filename, format="table", overwrite=False):
"""Write a model to disk as per the specified format
Parameters:
filename : str
name of output file
format : str, either "table" or "map"
if format is table, it is serialised as an astropy Table
if map, then it is serialised as a RegionNDMap
overwrite : bool
Overwrite file on disk if present
"""
if self.filename is None:
raise IOError("Missing filename")
if format == "table":
table = self.to_table()
table.write(filename, overwrite=overwrite)
elif format == "map":
self.map.write(filename, overwrite=overwrite)
else:
raise ValueError("Not a valid format, choose from ['map', 'table']")
[docs] def evaluate(self, time, t_ref=None):
"""Evaluate the model at given coordinates."""
if t_ref is None:
t_ref = Time(self.t_ref.value, format="mjd")
t = (time - t_ref).to_value(self.map.geom.axes["time"].unit)
coords = {"time": t}
val = self.map.interp_by_coord(coords)
val = np.clip(val, 0, a_max=None)
return u.Quantity(val, self.map.unit, copy=False)
[docs] @classmethod
def from_dict(cls, data):
data = data["temporal"]
filename = data["filename"]
format = data.get("format", "table")
return cls.read(filename, format)
[docs] def to_dict(self, full_output=False, format="table"):
"""Create dict for YAML serialisation"""
data = super().to_dict(full_output)
data["temporal"]["filename"] = self.filename
data["temporal"]["format"] = format
data["temporal"]["unit"] = str(self.map.unit)
return data
[docs]class PowerLawTemporalModel(TemporalModel):
"""Temporal model with a Power Law decay.
For more information see :ref:`powerlaw-temporal-model`.
Parameters
----------
alpha : float
Decay time power
t_ref: `~astropy.units.Quantity`
The reference time in mjd. Frozen by default, at 2000-01-01.
t0: `~astropy.units.Quantity`
The scaling time in mjd. Fixed by default, at 1 day.
"""
tag = ["PowerLawTemporalModel", "powerlaw"]
alpha = Parameter("alpha", 1.0, frozen=False)
_t_ref_default = Time("2000-01-01")
t_ref = Parameter("t_ref", _t_ref_default.mjd, unit="day", frozen=True)
t0 = Parameter("t0", "1 d", frozen=True)
[docs] @staticmethod
def evaluate(time, alpha, t_ref, t0=1 * u.day):
"""Evaluate at given times"""
return np.power((time - t_ref) / t0, alpha)
[docs] def integral(self, t_min, t_max):
"""Evaluate the integrated flux within the given time intervals
Parameters
----------
t_min: `~astropy.time.Time`
Start times of observation
t_max: `~astropy.time.Time`
Stop times of observation
Returns
-------
norm : float
Integrated flux norm on the given time intervals
"""
pars = self.parameters
alpha = pars["alpha"].quantity
t0 = pars["t0"].quantity
t_ref = Time(pars["t_ref"].quantity, format="mjd")
if alpha != -1:
value = self.evaluate(t_max, alpha + 1.0, t_ref, t0) - self.evaluate(
t_min, alpha + 1.0, t_ref, t0
)
return t0 / (alpha + 1.0) * value / self.time_sum(t_min, t_max)
else:
value = np.log((t_max - t_ref) / (t_min - t_ref))
return t0 * value / self.time_sum(t_min, t_max)
[docs]class SineTemporalModel(TemporalModel):
"""Temporal model with a sinusoidal modulation.
For more information see :ref:`sine-temporal-model`.
Parameters
----------
amp : float
Amplitude of the sinusoidal function
t_ref: `~astropy.units.Quantity`
The reference time in mjd.
omega: `~astropy.units.Quantity`
Pulsation of the signal.
"""
tag = ["SineTemporalModel", "sinus"]
amp = Parameter("amp", 1.0, frozen=False)
omega = Parameter("omega", "1. rad/day", frozen=False)
_t_ref_default = Time("2000-01-01")
t_ref = Parameter("t_ref", _t_ref_default.mjd, unit="day", frozen=False)
[docs] @staticmethod
def evaluate(time, amp, omega, t_ref):
"""Evaluate at given times"""
return 1.0 + amp * np.sin(omega * (time - t_ref))
[docs] def integral(self, t_min, t_max):
"""Evaluate the integrated flux within the given time intervals
Parameters
----------
t_min: `~astropy.time.Time`
Start times of observation
t_max: `~astropy.time.Time`
Stop times of observation
Returns
-------
norm : float
Integrated flux norm on the given time intervals
"""
pars = self.parameters
omega = pars["omega"].quantity.to_value("rad/day")
amp = pars["amp"].value
t_ref = Time(pars["t_ref"].quantity, format="mjd")
value = (t_max - t_min) - amp / omega * (
np.sin(omega * (t_max - t_ref).to_value("day"))
- np.sin(omega * (t_min - t_ref).to_value("day"))
)
return value / self.time_sum(t_min, t_max)
[docs]class TemplatePhaseCurveTemporalModel(TemporalModel):
"""Temporal phase curve model.
A timing solution is used to compute the phase corresponding to time and
a template phase curve is used to determine the associated ``norm``.
The phasecurve is given as a table with columns ``phase`` and ``norm``.
The ``norm`` is supposed to be a unit-less multiplicative factor in the model,
to be multiplied with a spectral model.
The model does linear interpolation for times between the given ``(phase, norm)`` values.
The implementation currently uses `scipy.interpolate. InterpolatedUnivariateSpline`,
using degree ``k=1`` to get linear interpolation.
This class also contains an ``integral`` method, making the computation of
mean fluxes for a given time interval a one-liner.
Parameters
----------
table : `~astropy.table.Table`
A table with 'PHASE' vs 'NORM'
filename : str
The name of the file containing the phase curve
t_ref : `~astropy.units.Quantity`
The reference time in mjd
phi_ref : `~astropy.units.Quantity`
The phase at reference time. Default is 0.
f0 : `~astropy.units.Quantity`
The frequency at t_ref in s-1
f1 : `~astropy.units.Quantity`
The frequency derivative at t_ref in s-2. Default is 0 s-2.
f2 : `~astropy.units.Quantity`
The frequency second derivative at t_ref in s-3. Default is 0 s-3.
"""
tag = ["TemplatePhaseCurveTemporalModel", "template-phase"]
_t_ref_default = Time(48442.5, format="mjd")
_phi_ref_default = 0
_f0_default = 29.946923 * u.s**-1
_f1_default = 0 * u.s**-2
_f2_default = 0 * u.s**-3
t_ref = Parameter("t_ref", _t_ref_default.mjd, unit="day", frozen=True)
phi_ref = Parameter("phi_ref", _phi_ref_default, unit="", frozen=True)
f0 = Parameter("f0", _f0_default, frozen=True)
f1 = Parameter("f1", _f1_default, frozen=True)
f2 = Parameter("f2", _f2_default, frozen=True)
def __init__(self, table, filename=None, **kwargs):
self.table = table
if filename is not None:
filename = str(make_path(filename))
self.filename = filename
super().__init__(**kwargs)
[docs] @classmethod
def read(
cls,
path,
t_ref=_t_ref_default.mjd * u.d,
phi_ref=_phi_ref_default,
f0=_f0_default,
f1=_f1_default,
f2=_f2_default,
):
"""Read phasecurve model table from FITS file.
Beware : this does **not** read parameters.
They will be set to defaults.
Parameters
----------
path : str or `~pathlib.Path`
filename with path
"""
filename = str(make_path(path))
return cls(
Table.read(filename),
filename=filename,
t_ref=t_ref,
phi_ref=phi_ref,
f0=f0,
f1=f1,
f2=f2,
)
@staticmethod
def _time_to_phase(time, t_ref, phi_ref, f0, f1, f2):
"""Convert time to phase given timing solution parameters.
Parameters
----------
time : `~astropy.units.Quantity`
The time at which to compute the phase
t_ref : `~astropy.units.Quantity`
The reference time in mjd.
phi_ref : `~astropy.units.Quantity`
The phase at reference time. Default is 0.
f0 : `~astropy.units.Quantity`
The frequency at t_ref in s-1
f1 : `~astropy.units.Quantity`
The frequency derivative at t_ref in s-2.
f2 : `~astropy.units.Quantity`
The frequency second derivative at t_ref in s-3.
Returns
-------
phase : float
Phase.
period_number : int
Number of period since t_ref.
"""
delta_t = time - t_ref
phase = (
phi_ref + delta_t * (f0 + delta_t / 2.0 * (f1 + delta_t / 3 * f2))
).to_value("")
period_number = np.floor(phase)
phase -= period_number
return phase, period_number
[docs] def write(self, path=None, overwrite=False):
if path is None:
path = self.filename
if path is None:
raise ValueError(f"filename is required for {self.tag}")
else:
self.filename = str(make_path(path))
self.table.write(self.filename, overwrite=overwrite)
@lazyproperty
def _interpolator(self):
x = self.table["PHASE"].data
y = self.table["NORM"].data
return scipy.interpolate.InterpolatedUnivariateSpline(
x, y, k=1, ext=2, bbox=[0.0, 1.0]
)
[docs] def evaluate(self, time, t_ref, phi_ref, f0, f1, f2):
phase, _ = self._time_to_phase(time, t_ref, phi_ref, f0, f1, f2)
return self._interpolator(phase)
[docs] def integral(self, t_min, t_max):
"""Evaluate the integrated flux within the given time intervals
Parameters
----------
t_min: `~astropy.time.Time`
Start times of observation
t_max: `~astropy.time.Time`
Stop times of observation
Returns
-------
norm: The model integrated flux
"""
kwargs = {par.name: par.quantity for par in self.parameters}
ph_min, n_min = self._time_to_phase(t_min.mjd * u.d, **kwargs)
ph_max, n_max = self._time_to_phase(t_max.mjd * u.d, **kwargs)
# here we assume that the frequency does not change during the integration boundaries
delta_t = (t_min.mjd - self.t_ref.value) * u.d
frequency = self.f0.quantity + delta_t * (
self.f1.quantity + delta_t * self.f2.quantity / 2
)
# Compute integral of one phase
phase_integral = self._interpolator.antiderivative()(
1
) - self._interpolator.antiderivative()(0)
# Multiply by the total number of phases
phase_integral *= n_max - n_min - 1
# Compute integrals before first full phase and after the last full phase
end_integral = self._interpolator.antiderivative()(
ph_max
) - self._interpolator.antiderivative()(0)
start_integral = self._interpolator.antiderivative()(
1
) - self._interpolator.antiderivative()(ph_min)
# Divide by Jacobian (here we neglect variations of frequency during the integration period)
total = (phase_integral + start_integral + end_integral) / frequency
# Normalize by total integration time
integral_norm = total / self.time_sum(t_min, t_max)
return integral_norm.to("")
[docs] @classmethod
def from_dict(cls, data):
params = _build_parameters_from_dict(
data["temporal"]["parameters"], cls.default_parameters
)
filename = data["temporal"]["filename"]
kwargs = {par.name: par for par in params}
return cls.read(filename, **kwargs)
[docs] def to_dict(self, full_output=False):
"""Create dict for YAML serialisation"""
model_dict = super().to_dict()
model_dict["temporal"]["filename"] = self.filename
return model_dict
[docs] def plot_phasogram(self, ax=None, n_points=100, **kwargs):
"""
Plot phasogram of the phase model.
Parameters
----------
ax : `~matplotlib.axes.Axes`, optional
Axis to plot on
n_points : int
Number of bins to plot model
**kwargs : dict
Keywords forwarded to `~matplotlib.pyplot.errorbar`
Returns
-------
ax : `~matplotlib.axes.Axes`, optional
axis
"""
phase_axis = MapAxis.from_bounds(0.0, 1, nbin=n_points, name="Phase", unit="")
m = RegionNDMap.create(region=None, axes=[phase_axis])
kwargs.setdefault("marker", "None")
kwargs.setdefault("ls", "-")
kwargs.setdefault("xerr", None)
m.quantity = self._interpolator(phase_axis.center)
ax = m.plot(ax=ax, **kwargs)
ax.set_ylabel("Norm / A.U.")
return ax