# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Session class driving the high level interface API"""
import logging
from astropy.coordinates import SkyCoord
from astropy.table import Table
from regions import CircleSkyRegion
from gammapy.analysis.config import AnalysisConfig
from gammapy.data import DataStore
from gammapy.datasets import Datasets, FluxPointsDataset, MapDataset, SpectrumDataset
from gammapy.estimators import (
ExcessMapEstimator,
FluxPointsEstimator,
LightCurveEstimator,
)
from gammapy.makers import (
DatasetsMaker,
FoVBackgroundMaker,
MapDatasetMaker,
ReflectedRegionsBackgroundMaker,
RingBackgroundMaker,
SafeMaskMaker,
SpectrumDatasetMaker,
)
from gammapy.maps import Map, MapAxis, RegionGeom, WcsGeom
from gammapy.modeling import Fit
from gammapy.modeling.models import DatasetModels, FoVBackgroundModel, Models
from gammapy.utils.pbar import progress_bar
from gammapy.utils.scripts import make_path
__all__ = ["Analysis"]
log = logging.getLogger(__name__)
[docs]class Analysis:
"""Config-driven high level analysis interface.
It is initialized by default with a set of configuration parameters and values declared in
an internal high level interface model, though the user can also provide configuration
parameters passed as a nested dictionary at the moment of instantiation. In that case these
parameters will overwrite the default values of those present in the configuration file.
Parameters
----------
config : dict or `AnalysisConfig`
Configuration options following `AnalysisConfig` schema
"""
def __init__(self, config):
self.config = config
self.config.set_logging()
self.datastore = None
self.observations = None
self.datasets = None
self.fit = Fit()
self.fit_result = None
self.flux_points = None
@property
def models(self):
if not self.datasets:
raise RuntimeError("No datasets defined. Impossible to set models.")
return self.datasets.models
@models.setter
def models(self, models):
self.set_models(models, extend=False)
@property
def config(self):
"""Analysis configuration (`AnalysisConfig`)"""
return self._config
@config.setter
def config(self, value):
if isinstance(value, dict):
self._config = AnalysisConfig(**value)
elif isinstance(value, AnalysisConfig):
self._config = value
else:
raise TypeError("config must be dict or AnalysisConfig.")
def _set_data_store(self):
"""Set the datastore on the Analysis object."""
path = make_path(self.config.observations.datastore)
if path.is_file():
log.debug(f"Setting datastore from file: {path}")
self.datastore = DataStore.from_file(path)
elif path.is_dir():
log.debug(f"Setting datastore from directory: {path}")
self.datastore = DataStore.from_dir(path)
else:
raise FileNotFoundError(f"Datastore not found: {path}")
def _make_obs_table_selection(self):
"""Return list of obs_ids after filtering on datastore observation table."""
obs_settings = self.config.observations
# Reject configs with list of obs_ids and obs_file set at the same time
if len(obs_settings.obs_ids) and obs_settings.obs_file is not None:
raise ValueError(
"Values for both parameters obs_ids and obs_file are not accepted."
)
# First select input list of observations from obs_table
if len(obs_settings.obs_ids):
selected_obs_table = self.datastore.obs_table.select_obs_id(
obs_settings.obs_ids
)
elif obs_settings.obs_file is not None:
path = make_path(obs_settings.obs_file)
ids = list(Table.read(path, format="ascii", data_start=0).columns[0])
selected_obs_table = self.datastore.obs_table.select_obs_id(ids)
else:
selected_obs_table = self.datastore.obs_table
# Apply cone selection
if obs_settings.obs_cone.lon is not None:
cone = dict(
type="sky_circle",
frame=obs_settings.obs_cone.frame,
lon=obs_settings.obs_cone.lon,
lat=obs_settings.obs_cone.lat,
radius=obs_settings.obs_cone.radius,
border="0 deg",
)
selected_obs_table = selected_obs_table.select_observations(cone)
return selected_obs_table["OBS_ID"].tolist()
[docs] def get_observations(self):
"""Fetch observations from the data store according to criteria defined
in the configuration."""
observations_settings = self.config.observations
self._set_data_store()
log.info("Fetching observations.")
ids = self._make_obs_table_selection()
required_irf = [_.value for _ in observations_settings.required_irf]
self.observations = self.datastore.get_observations(
ids, skip_missing=True, required_irf=required_irf
)
if observations_settings.obs_time.start is not None:
start = observations_settings.obs_time.start
stop = observations_settings.obs_time.stop
if len(start.shape) == 0:
time_intervals = [(start, stop)]
else:
time_intervals = [(tstart, tstop) for tstart, tstop in zip(start, stop)]
self.observations = self.observations.select_time(time_intervals)
log.info(f"Number of selected observations: {len(self.observations)}")
for obs in self.observations:
log.debug(obs)
[docs] def get_datasets(self):
"""Produce reduced datasets."""
datasets_settings = self.config.datasets
if not self.observations or len(self.observations) == 0:
raise RuntimeError("No observations have been selected.")
if datasets_settings.type == "1d":
self._spectrum_extraction()
else: # 3d
self._map_making()
[docs] def set_models(self, models, extend=True):
"""Set models on datasets.
Adds `FoVBackgroundModel` if not present already
Parameters
----------
models : `~gammapy.modeling.models.Models` or str
Models object or YAML models string
extend : bool
Extend the exiting models on the datasets or replace them.
"""
if not self.datasets or len(self.datasets) == 0:
raise RuntimeError("Missing datasets")
log.info("Reading model.")
if isinstance(models, str):
models = Models.from_yaml(models)
elif isinstance(models, Models):
pass
elif isinstance(models, DatasetModels) or isinstance(models, list):
models = Models(models)
else:
raise TypeError(f"Invalid type: {models!r}")
if extend:
models.extend(self.datasets.models)
self.datasets.models = models
bkg_models = []
for dataset in self.datasets:
if dataset.tag == "MapDataset" and dataset.background_model is None:
bkg_models.append(FoVBackgroundModel(dataset_name=dataset.name))
if bkg_models:
models.extend(bkg_models)
self.datasets.models = models
log.info(models)
[docs] def read_models(self, path, extend=True):
"""Read models from YAML file.
Parameters
----------
path : str
path to the model file
extend : bool
Extend the exiting models on the datasets or replace them.
"""
path = make_path(path)
models = Models.read(path)
self.set_models(models, extend=extend)
log.info(f"Models loaded from {path}.")
[docs] def write_models(self, overwrite=True, write_covariance=True):
"""Write models to YAML file.
File name is taken from the configuration file.
"""
filename_models = self.config.general.models_file
if filename_models is not None:
self.models.write(
filename_models, overwrite=overwrite, write_covariance=write_covariance
)
log.info(f"Models loaded from {filename_models}.")
else:
raise RuntimeError("Missing models_file in config.general")
[docs] def read_datasets(self):
"""Read datasets from YAML file.
File names are taken from the configuration file.
"""
filename = self.config.general.datasets_file
filename_models = self.config.general.models_file
if filename is not None:
self.datasets = Datasets.read(filename)
log.info(f"Datasets loaded from {filename}.")
if filename_models is not None:
self.read_models(filename_models, extend=False)
else:
raise RuntimeError("Missing datasets_file in config.general")
[docs] def write_datasets(self, overwrite=True, write_covariance=True):
"""Write datasets to YAML file.
File names are taken from the configuration file.
Parameters
----------
overwrite : bool
overwrite datasets FITS files
write_covariance : bool
save covariance or not
"""
filename = self.config.general.datasets_file
filename_models = self.config.general.models_file
if filename is not None:
self.datasets.write(
filename,
filename_models,
overwrite=overwrite,
write_covariance=write_covariance,
)
log.info(f"Datasets stored to {filename}.")
log.info(f"Datasets stored to {filename_models}.")
else:
raise RuntimeError("Missing datasets_file in config.general")
[docs] def run_fit(self):
"""Fitting reduced datasets to model."""
if not self.models:
raise RuntimeError("Missing models")
fit_settings = self.config.fit
for dataset in self.datasets:
if fit_settings.fit_range:
energy_min = fit_settings.fit_range.min
energy_max = fit_settings.fit_range.max
geom = dataset.counts.geom
dataset.mask_fit = geom.energy_mask(energy_min, energy_max)
log.info("Fitting datasets.")
result = self.fit.run(datasets=self.datasets)
self.fit_result = result
log.info(self.fit_result)
[docs] def get_flux_points(self):
"""Calculate flux points for a specific model component."""
if not self.datasets:
raise RuntimeError(
"No datasets defined. Impossible to compute flux points."
)
fp_settings = self.config.flux_points
log.info("Calculating flux points.")
energy_edges = self._make_energy_axis(fp_settings.energy).edges
flux_point_estimator = FluxPointsEstimator(
energy_edges=energy_edges,
source=fp_settings.source,
fit=self.fit,
**fp_settings.parameters,
)
fp = flux_point_estimator.run(datasets=self.datasets)
self.flux_points = FluxPointsDataset(
data=fp, models=self.models[fp_settings.source]
)
cols = ["e_ref", "dnde", "dnde_ul", "dnde_err", "sqrt_ts"]
table = self.flux_points.data.to_table(sed_type="dnde")
log.info("\n{}".format(table[cols]))
[docs] def get_excess_map(self):
"""Calculate excess map with respect to the current model."""
excess_settings = self.config.excess_map
log.info("Computing excess maps.")
# TODO: Here we could possibly stack the datasets if needed
# or allow to compute the excess map for each dataset
if len(self.datasets) > 1:
raise ValueError("Datasets must be stacked to compute the excess map")
if self.datasets[0].tag not in ["MapDataset", "MapDatasetOnOff"]:
raise ValueError("Cannot compute excess map for 1D dataset")
energy_edges = self._make_energy_axis(excess_settings.energy_edges)
if energy_edges is not None:
energy_edges = energy_edges.edges
excess_map_estimator = ExcessMapEstimator(
correlation_radius=excess_settings.correlation_radius,
energy_edges=energy_edges,
**excess_settings.parameters,
)
self.excess_map = excess_map_estimator.run(self.datasets[0])
[docs] def get_light_curve(self):
"""Calculate light curve for a specific model component."""
lc_settings = self.config.light_curve
log.info("Computing light curve.")
energy_edges = self._make_energy_axis(lc_settings.energy_edges).edges
if (
lc_settings.time_intervals.start is None
or lc_settings.time_intervals.stop is None
):
log.info(
"Time intervals not defined. Extract light curve on datasets GTIs."
)
time_intervals = None
else:
time_intervals = [
(t1, t2)
for t1, t2 in zip(
lc_settings.time_intervals.start, lc_settings.time_intervals.stop
)
]
light_curve_estimator = LightCurveEstimator(
time_intervals=time_intervals,
energy_edges=energy_edges,
source=lc_settings.source,
fit=self.fit,
**lc_settings.parameters,
)
lc = light_curve_estimator.run(datasets=self.datasets)
self.light_curve = lc
log.info(
"\n{}".format(
self.light_curve.to_table(format="lightcurve", sed_type="flux")
)
)
[docs] def update_config(self, config):
self.config = self.config.update(config=config)
@staticmethod
def _create_wcs_geometry(wcs_geom_settings, axes):
"""Create the WCS geometry."""
geom_params = {}
skydir_settings = wcs_geom_settings.skydir
if skydir_settings.lon is not None:
skydir = SkyCoord(
skydir_settings.lon, skydir_settings.lat, frame=skydir_settings.frame
)
geom_params["skydir"] = skydir
if skydir_settings.frame in ["icrs", "galactic"]:
geom_params["frame"] = skydir_settings.frame
else:
raise ValueError(
f"Incorrect skydir frame: expect 'icrs' or 'galactic'. Got {skydir_settings.frame}"
)
geom_params["axes"] = axes
geom_params["binsz"] = wcs_geom_settings.binsize
width = wcs_geom_settings.width.width.to("deg").value
height = wcs_geom_settings.width.height.to("deg").value
geom_params["width"] = (width, height)
return WcsGeom.create(**geom_params)
@staticmethod
def _create_region_geometry(on_region_settings, axes):
"""Create the region geometry."""
on_lon = on_region_settings.lon
on_lat = on_region_settings.lat
on_center = SkyCoord(on_lon, on_lat, frame=on_region_settings.frame)
on_region = CircleSkyRegion(on_center, on_region_settings.radius)
return RegionGeom.create(region=on_region, axes=axes)
def _create_geometry(self):
"""Create the geometry."""
log.debug("Creating geometry.")
datasets_settings = self.config.datasets
geom_settings = datasets_settings.geom
axes = [self._make_energy_axis(geom_settings.axes.energy)]
if datasets_settings.type == "3d":
geom = self._create_wcs_geometry(geom_settings.wcs, axes)
elif datasets_settings.type == "1d":
geom = self._create_region_geometry(datasets_settings.on_region, axes)
else:
raise ValueError(
f"Incorrect dataset type. Expect '1d' or '3d'. Got {datasets_settings.type}."
)
return geom
def _create_reference_dataset(self, name=None):
"""Create the reference dataset for the current analysis."""
log.debug("Creating target Dataset.")
geom = self._create_geometry()
geom_settings = self.config.datasets.geom
geom_irf = dict(energy_axis_true=None, binsz_irf=None)
if geom_settings.axes.energy_true.min is not None:
geom_irf["energy_axis_true"] = self._make_energy_axis(
geom_settings.axes.energy_true, name="energy_true"
)
if geom_settings.wcs.binsize_irf is not None:
geom_irf["binsz_irf"] = geom_settings.wcs.binsize_irf.to("deg").value
if self.config.datasets.type == "1d":
return SpectrumDataset.create(geom, name=name, **geom_irf)
else:
return MapDataset.create(geom, name=name, **geom_irf)
def _create_dataset_maker(self):
"""Create the Dataset Maker."""
log.debug("Creating the target Dataset Maker.")
datasets_settings = self.config.datasets
if datasets_settings.type == "3d":
maker = MapDatasetMaker(selection=datasets_settings.map_selection)
elif datasets_settings.type == "1d":
maker_config = {}
if datasets_settings.containment_correction:
maker_config[
"containment_correction"
] = datasets_settings.containment_correction
maker_config["selection"] = ["counts", "exposure", "edisp"]
maker = SpectrumDatasetMaker(**maker_config)
return maker
def _create_safe_mask_maker(self):
"""Create the SafeMaskMaker."""
log.debug("Creating the mask_safe Maker.")
safe_mask_selection = self.config.datasets.safe_mask.methods
safe_mask_settings = self.config.datasets.safe_mask.parameters
return SafeMaskMaker(methods=safe_mask_selection, **safe_mask_settings)
def _create_background_maker(self):
"""Create the Background maker."""
log.info("Creating the background Maker.")
datasets_settings = self.config.datasets
bkg_maker_config = {}
if datasets_settings.background.exclusion:
path = make_path(datasets_settings.background.exclusion)
exclusion_mask = Map.read(path)
exclusion_mask.data = exclusion_mask.data.astype(bool)
bkg_maker_config["exclusion_mask"] = exclusion_mask
bkg_maker_config.update(datasets_settings.background.parameters)
bkg_method = datasets_settings.background.method
bkg_maker = None
if bkg_method == "fov_background":
log.debug(f"Creating FoVBackgroundMaker with arguments {bkg_maker_config}")
bkg_maker = FoVBackgroundMaker(**bkg_maker_config)
elif bkg_method == "ring":
bkg_maker = RingBackgroundMaker(**bkg_maker_config)
log.debug(f"Creating RingBackgroundMaker with arguments {bkg_maker_config}")
if datasets_settings.geom.axes.energy.nbins > 1:
raise ValueError(
"You need to define a single-bin energy geometry for your dataset."
)
elif bkg_method == "reflected":
bkg_maker = ReflectedRegionsBackgroundMaker(**bkg_maker_config)
log.debug(
f"Creating ReflectedRegionsBackgroundMaker with arguments {bkg_maker_config}"
)
else:
log.warning("No background maker set. Check configuration.")
return bkg_maker
def _map_making(self):
"""Make maps and datasets for 3d analysis"""
datasets_settings = self.config.datasets
offset_max = datasets_settings.geom.selection.offset_max
log.info("Creating reference dataset and makers.")
stacked = self._create_reference_dataset(name="stacked")
maker = self._create_dataset_maker()
maker_safe_mask = self._create_safe_mask_maker()
bkg_maker = self._create_background_maker()
makers = [maker, maker_safe_mask, bkg_maker]
makers = [maker for maker in makers if maker is not None]
log.info("Start the data reduction loop.")
datasets_maker = DatasetsMaker(
makers,
stack_datasets=datasets_settings.stack,
n_jobs=self.config.general.n_jobs,
cutout_mode="trim",
cutout_width=2 * offset_max,
)
self.datasets = datasets_maker.run(stacked, self.observations)
# TODO: move progress bar to DatasetsMaker but how with multiprocessing ?
def _spectrum_extraction(self):
"""Run all steps for the spectrum extraction."""
log.info("Reducing spectrum datasets.")
datasets_settings = self.config.datasets
dataset_maker = self._create_dataset_maker()
safe_mask_maker = self._create_safe_mask_maker()
bkg_maker = self._create_background_maker()
reference = self._create_reference_dataset()
datasets = []
for obs in progress_bar(self.observations, desc="Observations"):
log.debug(f"Processing observation {obs.obs_id}")
dataset = dataset_maker.run(reference.copy(), obs)
if bkg_maker is not None:
dataset = bkg_maker.run(dataset, obs)
if dataset.counts_off is None:
log.debug(
f"No OFF region found for observation {obs.obs_id}. Discarding."
)
continue
dataset = safe_mask_maker.run(dataset, obs)
log.debug(dataset)
datasets.append(dataset)
self.datasets = Datasets(datasets)
if datasets_settings.stack:
stacked = self.datasets.stack_reduce(name="stacked")
self.datasets = Datasets([stacked])
@staticmethod
def _make_energy_axis(axis, name="energy"):
if axis.min is None or axis.max is None:
return None
elif axis.nbins is None or axis.nbins < 1:
return None
else:
return MapAxis.from_bounds(
name=name,
lo_bnd=axis.min.value,
hi_bnd=axis.max.to_value(axis.min.unit),
nbin=axis.nbins,
unit=axis.min.unit,
interp="log",
node_type="edges",
)