# Licensed under a 3-clause BSD style license - see LICENSE.rst
import collections.abc
import copy
import html
import inspect
import itertools
import logging
import warnings
from itertools import zip_longest
import numpy as np
import astropy.units as u
from astropy.coordinates import SkyCoord
from astropy.io import fits
from astropy.time import Time
from astropy.units import Quantity
from astropy.utils import lazyproperty
import matplotlib.pyplot as plt
from gammapy.utils.deprecation import GammapyDeprecationWarning, deprecated
from gammapy.utils.fits import LazyFitsData, earth_location_to_dict
from gammapy.utils.metadata import CreatorMetaData, TargetMetaData, TimeInfoMetaData
from gammapy.utils.scripts import make_path
from gammapy.utils.testing import Checker
from gammapy.utils.time import time_ref_to_dict, time_relative_to_ref
from .event_list import EventList, EventListChecker
from .filters import ObservationFilter
from .gti import GTI
from .metadata import ObservationMetaData
from .pointing import FixedPointingInfo
__all__ = ["Observation", "Observations"]
log = logging.getLogger(__name__)
[docs]class Observation:
"""In-memory observation.
Parameters
----------
obs_id : int, optional
Observation id. Default is None
obs_info : dict, optional
Observation info dict. Default is None.
aeff : `~gammapy.irf.EffectiveAreaTable2D`, optional
Effective area. Default is None.
edisp : `~gammapy.irf.EnergyDispersion2D`, optional
Energy dispersion. Default is None.
psf : `~gammapy.irf.PSF3D`, optional
Point spread function. Default is None.
bkg : `~gammapy.irf.Background3D`, optional
Background rate model. Default is None.
rad_max : `~gammapy.irf.RadMax2D`, optional
Only for point-like IRFs: RAD_MAX table (energy dependent RAD_MAX)
For a fixed RAD_MAX, create a RadMax2D with a single bin. Default is None.
gti : `~gammapy.data.GTI`, optional
Table with GTI start and stop time. Default is None.
events : `~gammapy.data.EventList`, optional
Event list. Default is None.
obs_filter : `ObservationFilter`, optional
Observation filter. Default is None.
pointing : `~gammapy.data.FixedPointingInfo`, optional
Pointing information. Default is None.
location : `~astropy.coordinates.EarthLocation`, optional
Earth location of the observatory. Default is None.
"""
aeff = LazyFitsData(cache=False)
edisp = LazyFitsData(cache=False)
psf = LazyFitsData(cache=False)
bkg = LazyFitsData(cache=False)
_rad_max = LazyFitsData(cache=True)
_events = LazyFitsData(cache=False)
_gti = LazyFitsData(cache=True)
_pointing = LazyFitsData(cache=True)
def __init__(
self,
obs_id=None,
meta=None,
obs_info=None,
gti=None,
aeff=None,
edisp=None,
psf=None,
bkg=None,
rad_max=None,
events=None,
obs_filter=None,
pointing=None,
location=None,
):
if obs_info is not None:
warnings.warn(
"obs_info argument is deprecated since v1.2. Use meta instead.",
GammapyDeprecationWarning,
)
if meta is None:
meta = ObservationMetaData.from_header(obs_info)
self.obs_id = obs_id
self.aeff = aeff
self.edisp = edisp
self.psf = psf
self.bkg = bkg
self._rad_max = rad_max
self._gti = gti
self._events = events
self._pointing = pointing
self._location = location # this is part of the meta or is it data?
self.obs_filter = obs_filter or ObservationFilter()
self._meta = meta
def _repr_html_(self):
try:
return self.to_html()
except AttributeError:
return f"<pre>{html.escape(str(self))}</pre>"
@property
def meta(self):
"""Return metadata container."""
if self._meta is None and self.events:
self._meta = ObservationMetaData.from_header(self.events.table.meta)
return self._meta
@property
def rad_max(self):
"""Rad max IRF. None if not available."""
# prevent circular import
from gammapy.irf import RadMax2D
if self._rad_max is not None:
return self._rad_max
# load once to avoid trigger lazy loading it three times
aeff = self.aeff
if aeff is not None and aeff.is_pointlike:
self._rad_max = RadMax2D.from_irf(aeff)
return self._rad_max
edisp = self.edisp
if edisp is not None and edisp.is_pointlike:
self._rad_max = RadMax2D.from_irf(self.edisp)
return self._rad_max
@property
def available_hdus(self):
"""Which HDUs are available."""
available_hdus = []
keys = ["_events", "_gti", "aeff", "edisp", "psf", "bkg", "_rad_max"]
hdus = ["events", "gti", "aeff", "edisp", "psf", "bkg", "rad_max"]
for key, hdu in zip(keys, hdus):
available = self.__dict__.get(key, False)
available_hdu = self.__dict__.get(f"_{hdu}_hdu", False)
available_hdu_ = self.__dict__.get(f"_{key}_hdu", False)
if available or available_hdu or available_hdu_:
available_hdus.append(hdu)
return available_hdus
@property
def available_irfs(self):
"""Which IRFs are available."""
return [_ for _ in self.available_hdus if _ not in ["events", "gti"]]
@property
def events(self):
"""Event list of the observation as an `~gammapy.data.EventList`."""
events = self.obs_filter.filter_events(self._events)
return events
@events.setter
def events(self, value):
if not isinstance(value, EventList):
raise TypeError(f"events must be an EventList instance, got: {type(value)}")
self._events = value
@property
def gti(self):
"""GTI of the observation as a `~gammapy.data.GTI`."""
gti = self.obs_filter.filter_gti(self._gti)
return gti
@staticmethod
def _get_obs_info(
pointing, deadtime_fraction, time_start, time_stop, reference_time, location
):
"""Create observation information dictionary from in memory data."""
obs_info = {
"DEADC": 1 - deadtime_fraction,
}
if isinstance(pointing, SkyCoord):
obs_info["RA_PNT"] = pointing.icrs.ra.deg
obs_info["DEC_PNT"] = pointing.icrs.dec.deg
obs_info.update(time_ref_to_dict(reference_time))
obs_info["TSTART"] = time_relative_to_ref(time_start, obs_info).to_value(u.s)
obs_info["TSTOP"] = time_relative_to_ref(time_stop, obs_info).to_value(u.s)
if location is not None:
obs_info.update(earth_location_to_dict(location))
return obs_info
[docs] @classmethod
def create(
cls,
pointing,
location=None,
obs_id=0,
livetime=None,
tstart=None,
tstop=None,
irfs=None,
deadtime_fraction=0.0,
reference_time=Time("2000-01-01 00:00:00"),
):
"""Create an observation.
User must either provide the livetime, or the start and stop times.
Parameters
----------
pointing : `~gammapy.data.FixedPointingInfo` or `~astropy.coordinates.SkyCoord`
Pointing information.
location : `~astropy.coordinates.EarthLocation`, optional
Earth location of the observatory. Default is None.
obs_id : int, optional
Observation ID as identifier. Default is 0.
livetime : ~astropy.units.Quantity`, optional
Livetime exposure of the simulated observation. Default is None.
tstart : `~astropy.time.Time` or `~astropy.units.Quantity`, optional
Start time of observation as `~astropy.time.Time` or duration
relative to `reference_time`. Default is None.
tstop : `astropy.time.Time` or `~astropy.units.Quantity`, optional
Stop time of observation as `~astropy.time.Time` or duration
relative to `reference_time`. Default is None.
irfs : dict, optional
IRFs used for simulating the observation: `bkg`, `aeff`, `psf`, `edisp`, `rad_max`. Default is None.
deadtime_fraction : float, optional
Deadtime fraction. Default is 0.
reference_time : `~astropy.time.Time`, optional
the reference time to use in GTI definition. Default is `~astropy.time.Time("2000-01-01 00:00:00")`.
Returns
-------
obs : `gammapy.data.MemoryObservation`
Observation.
"""
if tstart is None:
tstart = reference_time.copy()
if tstop is None:
tstop = tstart + Quantity(livetime)
gti = GTI.create(tstart, tstop, reference_time=reference_time)
obs_info = cls._get_obs_info(
pointing=pointing,
deadtime_fraction=deadtime_fraction,
time_start=gti.time_start[0],
time_stop=gti.time_stop[0],
reference_time=reference_time,
location=location,
)
time_info = TimeInfoMetaData(
time_start=gti.time_start[0],
time_stop=gti.time_stop[-1],
reference_time=reference_time,
)
meta = ObservationMetaData(
deadtime_fraction=deadtime_fraction,
location=location,
time_info=time_info,
creation=CreatorMetaData(),
target=TargetMetaData(),
)
if not isinstance(pointing, FixedPointingInfo):
warnings.warn(
"Pointing will be required to be provided as FixedPointingInfo",
GammapyDeprecationWarning,
)
pointing = FixedPointingInfo.from_fits_header(obs_info)
return cls(
obs_id=obs_id,
meta=meta,
gti=gti,
aeff=irfs.get("aeff"),
bkg=irfs.get("bkg"),
edisp=irfs.get("edisp"),
psf=irfs.get("psf"),
rad_max=irfs.get("rad_max"),
pointing=pointing,
location=location,
)
@property
def tstart(self):
"""Observation start time as a `~astropy.time.Time` object."""
return self.gti.time_start[0]
@property
def tstop(self):
"""Observation stop time as a `~astropy.time.Time` object."""
return self.gti.time_stop[0]
@property
def tmid(self):
"""Midpoint between start and stop time as a `~astropy.time.Time` object."""
return self.tstart + 0.5 * (self.tstop - self.tstart)
@property
def observation_time_duration(self):
"""Observation time duration in seconds as a `~astropy.units.Quantity`.
The wall time, including dead-time.
"""
return self.gti.time_sum
@property
def observation_live_time_duration(self):
"""Live-time duration in seconds as a `~astropy.units.Quantity`.
The dead-time-corrected observation time.
Computed as ``t_live = t_observation * (1 - f_dead)``
where ``f_dead`` is the dead-time fraction.
"""
return (
self.observation_time_duration
* (1 - self.observation_dead_time_fraction)
* self.obs_filter.livetime_fraction
)
@property
def observation_dead_time_fraction(self):
"""Dead-time fraction (float).
Defined as dead-time over observation time.
Dead-time is defined as the time during the observation
where the detector didn't record events:
https://en.wikipedia.org/wiki/Dead_time
https://ui.adsabs.harvard.edu/abs/2004APh....22..285F
The dead-time fraction is used in the live-time computation,
which in turn is used in the exposure and flux computation.
"""
return self.meta.deadtime_fraction
@property
def obs_info(self):
"""Observation information dictionary."""
warnings.warn(
"obs_info property is deprecated since v1.2. Use meta instead.",
GammapyDeprecationWarning,
)
return self.meta.to_header()
@property
def pointing(self):
"""Get the pointing for the observation as a `~gammapy.data.FixedPointingInfo` object."""
if self._pointing is None:
self._pointing = FixedPointingInfo.from_fits_header(self.events.table.meta)
return self._pointing
[docs] def get_pointing_altaz(self, time):
"""Get the pointing in alt-az for given time."""
return self.pointing.get_altaz(time, self.observatory_earth_location)
[docs] def get_pointing_icrs(self, time):
"""Get the pointing in ICRS for given time."""
return self.pointing.get_icrs(time, self.observatory_earth_location)
@property
def observatory_earth_location(self):
"""Observatory location as an `~astropy.coordinates.EarthLocation` object."""
return self._location
@lazyproperty
def target_radec(self):
"""Target RA / DEC sky coordinates as a `~astropy.coordinates.SkyCoord` object."""
return self.meta.target.position
@property
@deprecated(
"v1.2",
message="Access additional metadata directly in obs.meta.opt.",
)
def muoneff(self):
"""Observation muon efficiency."""
if "MUONEFF" in self.meta.optional:
return self.meta.optional["MUONEFF"]
else:
raise KeyError("No muon efficiency information.")
def __str__(self):
pointing = self.get_pointing_icrs(self.tmid)
ra = pointing.ra.deg
dec = pointing.dec.deg
pointing = f"{ra:.1f} deg, {dec:.1f} deg\n"
# TODO: Which target was observed?
# TODO: print info about available HDUs for this observation ...
return (
f"{self.__class__.__name__}\n\n"
f"\tobs id : {self.obs_id} \n "
f"\ttstart : {self.tstart.mjd:.2f}\n"
f"\ttstop : {self.tstop.mjd:.2f}\n"
f"\tduration : {self.observation_time_duration:.2f}\n"
f"\tpointing (icrs) : {pointing}\n"
f"\tdeadtime fraction : {self.observation_dead_time_fraction:.1%}\n"
)
[docs] def check(self, checks="all"):
"""Run checks.
This is a generator that yields a list of dictionary.
"""
checker = ObservationChecker(self)
return checker.run(checks=checks)
[docs] def peek(self, figsize=(15, 10)):
"""Quick-look plots in a few panels.
Parameters
----------
figsize : tuple, optional
Figure size. Default is (15, 10).
"""
plottable_hds = ["events", "aeff", "psf", "edisp", "bkg", "rad_max"]
plot_hdus = list(set(plottable_hds) & set(self.available_hdus))
plot_hdus.sort()
n_irfs = len(plot_hdus)
nrows = n_irfs // 2
ncols = 2 + n_irfs % 2
fig, axes = plt.subplots(
nrows=nrows,
ncols=ncols,
figsize=figsize,
gridspec_kw={"wspace": 0.3, "hspace": 0.3},
)
for idx, (ax, name) in enumerate(zip_longest(axes.flat, plot_hdus)):
if name == "aeff":
self.aeff.plot(ax=ax)
ax.set_title("Effective area")
if name == "bkg":
bkg = self.bkg
if not bkg.has_offset_axis:
bkg = bkg.to_2d()
bkg.plot(ax=ax)
ax.set_title("Background rate")
if name == "psf":
self.psf.plot_containment_radius_vs_energy(ax=ax)
ax.set_title("Point spread function")
if name == "edisp":
self.edisp.plot_bias(ax=ax, add_cbar=True)
ax.set_title("Energy dispersion")
if name == "rad_max":
self.rad_max.plot_rad_max_vs_energy(ax=ax)
ax.set_title("Rad max")
if name == "events":
m = self.events._counts_image(allsky=False)
ax.remove()
ax = fig.add_subplot(nrows, ncols, idx + 1, projection=m.geom.wcs)
m.plot(ax=ax, stretch="sqrt", vmin=0, add_cbar=True)
ax.set_title("Events")
if name is None:
ax.set_visible(False)
[docs] def select_time(self, time_interval):
"""Select a time interval of the observation.
Parameters
----------
time_interval : `astropy.time.Time`
Start and stop time of the selected time interval.
For now, we only support a single time interval.
Returns
-------
new_obs : `~gammapy.data.Observation`
A new observation instance of the specified time interval.
"""
new_obs_filter = self.obs_filter.copy()
new_obs_filter.time_filter = time_interval
obs = copy.deepcopy(self)
obs.obs_filter = new_obs_filter
return obs
[docs] @classmethod
def read(cls, event_file, irf_file=None, checksum=False):
"""Create an Observation from a Event List and an (optional) IRF file.
Parameters
----------
event_file : str or `~pathlib.Path`
Path to the FITS file containing the event list and the GTI.
irf_file : str or `~pathlib.Path`, optional
Path to the FITS file containing the IRF components. Default is None.
If None, the IRFs will be read from the event file.
checksum : bool
If True checks both DATASUM and CHECKSUM cards in the file headers. Default is False.
Returns
-------
observation : `~gammapy.data.Observation`
Observation with the events and the IRF read from the file.
"""
from gammapy.irf.io import load_irf_dict_from_file
events = EventList.read(event_file, checksum=checksum)
gti = GTI.read(event_file, checksum=checksum)
irf_file = irf_file if irf_file is not None else event_file
irf_dict = load_irf_dict_from_file(irf_file)
obs_info = events.table.meta
meta = ObservationMetaData.from_header(obs_info)
return cls(
events=events,
gti=gti,
obs_id=meta.obs_info.obs_id,
pointing=FixedPointingInfo.from_fits_header(obs_info),
meta=meta,
location=meta.location,
**irf_dict,
)
[docs] def write(
self, path, overwrite=False, format="gadf", include_irfs=True, checksum=False
):
"""
Write this observation into `~pathlib.Path` using the specified format.
Parameters
----------
path : str or `~pathlib.Path`
Path for the output file.
overwrite : bool, optional
Overwrite existing file. Default is False.
format : {"gadf"}
Output format, currently only "gadf" is supported. Default is "gadf".
include_irfs : bool, optional
Whether to include irf components in the output file. Default is True.
checksum : bool, optional
When True adds both DATASUM and CHECKSUM cards to the headers written to the file.
Default is False.
"""
if format != "gadf":
raise ValueError(f'Only the "gadf" format is supported, got {format}')
path = make_path(path)
primary = fits.PrimaryHDU()
primary.header.update(self.meta.creation.to_header(format))
hdul = fits.HDUList([primary])
events = self.events
if events is not None:
events_hdu = events.to_table_hdu(format=format)
events_hdu.header.update(self.pointing.to_fits_header())
hdul.append(events_hdu)
gti = self.gti
if gti is not None:
hdul.append(gti.to_table_hdu(format=format))
if include_irfs:
for irf_name in self.available_irfs:
irf = getattr(self, irf_name)
if irf is not None:
hdul.append(irf.to_table_hdu(format="gadf-dl3"))
hdul.writeto(path, overwrite=overwrite, checksum=checksum)
[docs] def copy(self, in_memory=False, **kwargs):
"""Copy observation.
Overwriting `Observation` arguments requires the ``in_memory`` argument to be true.
Parameters
----------
in_memory : bool, optional
Copy observation in memory. Default is False.
**kwargs : dict, optional
Keyword arguments passed to `Observation`.
Examples
--------
>>> from gammapy.data import Observation
>>> obs = Observation.read("$GAMMAPY_DATA/hess-dl3-dr1/data/hess_dl3_dr1_obs_id_020136.fits.gz")
>>> obs_copy = obs.copy(in_memory=True, obs_id=1234)
>>> print(obs_copy) # doctest: +SKIP
Returns
-------
obs : `Observation`
Copied observation.
"""
if in_memory:
argnames = inspect.getfullargspec(self.__init__).args
# TODO: remove once obs_info is removed from the list of arguments in __init__
argnames.remove("obs_info")
argnames.remove("self")
for name in argnames:
if name == "location":
attr = "observatory_earth_location"
else:
attr = name
value = getattr(self, attr)
kwargs.setdefault(name, copy.deepcopy(value))
return self.__class__(**kwargs)
if kwargs:
raise ValueError("Overwriting arguments requires to set 'in_memory=True'")
return copy.deepcopy(self)
[docs]class Observations(collections.abc.MutableSequence):
"""Container class that holds a list of observations.
Parameters
----------
observations : list
A list of `~gammapy.data.Observation`.
"""
def __init__(self, observations=None):
self._observations = []
if observations is None:
observations = []
for obs in observations:
self.append(obs)
def __getitem__(self, key):
if isinstance(key, slice):
return self.__class__(self._observations[key])
else:
return self._observations[self.index(key)]
def __delitem__(self, key):
del self._observations[self.index(key)]
def __setitem__(self, key, obs):
if isinstance(obs, Observation):
if obs in self:
log.warning(
f"Observation with obs_id {obs.obs_id} already belongs to Observations."
)
self._observations[self.index(key)] = obs
else:
raise TypeError(f"Invalid type: {type(obs)!r}")
[docs] def insert(self, idx, obs):
if isinstance(obs, Observation):
if obs in self:
log.warning(
f"Observation with obs_id {obs.obs_id} already belongs to Observations."
)
self._observations.insert(idx, obs)
else:
raise TypeError(f"Invalid type: {type(obs)!r}")
def __len__(self):
return len(self._observations)
def __str__(self):
s = self.__class__.__name__ + "\n"
s += "Number of observations: {}\n".format(len(self))
for obs in self:
s += str(obs)
return s
[docs] def index(self, key):
if isinstance(key, (int, slice)):
return key
elif isinstance(key, str):
return self.ids.index(key)
elif isinstance(key, Observation):
return self._observations.index(key)
else:
raise TypeError(f"Invalid type: {type(key)!r}")
@property
def ids(self):
"""List of observation IDs (`list`)."""
return [str(obs.obs_id) for obs in self]
[docs] def select_time(self, time_intervals):
"""Select a time interval of the observations.
Parameters
----------
time_intervals : `astropy.time.Time` or list of `astropy.time.Time`
List of start and stop time of the time intervals or one time interval.
Returns
-------
new_observations : `~gammapy.data.Observations`
A new Observations instance of the specified time intervals.
"""
new_obs_list = []
if isinstance(time_intervals, Time):
time_intervals = [time_intervals]
for time_interval in time_intervals:
for obs in self:
if (obs.tstart < time_interval[1]) & (obs.tstop > time_interval[0]):
new_obs = obs.select_time(time_interval)
new_obs_list.append(new_obs)
return self.__class__(new_obs_list)
def _ipython_key_completions_(self):
return self.ids
[docs] def group_by_label(self, labels):
"""Split observations in multiple groups of observations.
Parameters
----------
labels : list or `numpy.ndarray`
Array of group labels.
Returns
-------
obs_clusters : dict of `~gammapy.data.Observations`
Dictionary of Observations instance, one instance for each group.
"""
obs_groups = {}
for label in np.unique(labels):
observations = self.__class__(
[obs for k, obs in enumerate(self) if labels[k] == label]
)
obs_groups[f"group_{label}"] = observations
return obs_groups
[docs] @classmethod
def from_stack(cls, observations_list):
# TODO : Do more check when stacking observations when we have metadata.
"""Create a new `Observations` instance by concatenating a list of `Observations` objects.
Parameters
----------
observations_list : list of `~gammapy.data.Observations`
The list of `Observations` to stack.
Returns
-------
observations : `~gammapy.data.Observations`
The `Observations` object resulting from stacking all the `Observations` in `observation_list`.
"""
obs = itertools.chain(*observations_list)
return cls(list(obs))
[docs] def in_memory_generator(self):
"""A generator that iterates over observation. Yield an in memory copy of the observation."""
for obs in self:
obs_copy = obs.copy(in_memory=True)
yield obs_copy
class ObservationChecker(Checker):
"""Check an observation.
Checks data format and a bit about the content.
"""
CHECKS = {
"events": "check_events",
"gti": "check_gti",
"aeff": "check_aeff",
"edisp": "check_edisp",
"psf": "check_psf",
}
def __init__(self, observation):
self.observation = observation
def _record(self, level="info", msg=None):
return {"level": level, "obs_id": self.observation.obs_id, "msg": msg}
def check_events(self):
yield self._record(level="debug", msg="Starting events check")
try:
events = self.observation.events
except Exception:
yield self._record(level="warning", msg="Loading events failed")
return
yield from EventListChecker(events).run()
# TODO: split this out into a GTIChecker
def check_gti(self):
yield self._record(level="debug", msg="Starting gti check")
try:
gti = self.observation.gti
except Exception:
yield self._record(level="warning", msg="Loading GTI failed")
return
if len(gti.table) == 0:
yield self._record(level="error", msg="GTI table has zero rows")
columns_required = ["START", "STOP"]
for name in columns_required:
if name not in gti.table.colnames:
yield self._record(level="error", msg=f"Missing table column: {name!r}")
# TODO: Check that header keywords agree with table entries
# TSTART, TSTOP, MJDREFI, MJDREFF
# Check that START and STOP times are consecutive
# times = np.ravel(self.table['START'], self.table['STOP'])
# # TODO: not sure this is correct ... add test with a multi-gti table from Fermi.
# if not np.all(np.diff(times) >= 0):
# yield 'GTIs are not consecutive or sorted.'
# TODO: add reference times for all instruments and check for this
# Use TELESCOP header key to check which instrument it is.
def _check_times(self):
"""Check if various times are consistent.
The headers and tables of the FITS EVENTS and GTI extension
contain various observation and event time information.
"""
# http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Data/Time_in_ScienceTools.html
# https://hess-confluence.desy.de/confluence/display/HESS/HESS+FITS+data+-+References+and+checks#HESSFITSdata-Referencesandchecks-Time
telescope_met_refs = {
"FERMI": Time("2001-01-01T00:00:00"),
"HESS": Time("2001-01-01T00:00:00"),
}
meta = self.dset.event_list.table.meta
telescope = meta["TELESCOP"]
if telescope in telescope_met_refs.keys():
dt = self.time_ref - telescope_met_refs[telescope]
if dt > self.accuracy["time"]:
yield self._record(
level="error", msg="Reference time incorrect for telescope"
)
def check_aeff(self):
yield self._record(level="debug", msg="Starting aeff check")
try:
aeff = self.observation.aeff
except Exception:
yield self._record(level="warning", msg="Loading aeff failed")
return
# Check that thresholds are meaningful for aeff
if (
"LO_THRES" in aeff.meta
and "HI_THRES" in aeff.meta
and aeff.meta["LO_THRES"] >= aeff.meta["HI_THRES"]
):
yield self._record(
level="error", msg="LO_THRES >= HI_THRES in effective area meta data"
)
# Check that data isn't all null
if np.max(aeff.data.data) <= 0:
yield self._record(
level="error", msg="maximum entry of effective area is <= 0"
)
def check_edisp(self):
yield self._record(level="debug", msg="Starting edisp check")
try:
edisp = self.observation.edisp
except Exception:
yield self._record(level="warning", msg="Loading edisp failed")
return
# Check that data isn't all null
if np.max(edisp.data.data) <= 0:
yield self._record(level="error", msg="maximum entry of edisp is <= 0")
def check_psf(self):
yield self._record(level="debug", msg="Starting psf check")
try:
self.observation.psf
except Exception:
yield self._record(level="warning", msg="Loading psf failed")
return