# Licensed under a 3-clause BSD style license - see LICENSE.rstimportcopyimportloggingimportnumpyasnpfromastropy.convolutionimportTophat2DKernelfromastropy.coordinatesimportAnglefromgammapy.datasetsimportMapDataset,MapDatasetOnOfffromgammapy.mapsimportMapfromgammapy.modeling.modelsimportPowerLawSpectralModel,SkyModelfromgammapy.statsimportCashCountsStatistic,WStatCountsStatisticfrom..coreimportEstimatorfrom..utilsimportestimate_exposure_reco_energyfrom.coreimportFluxMaps__all__=["ExcessMapEstimator",]log=logging.getLogger(__name__)defconvolved_map_dataset_counts_statistics(dataset,kernel,mask,correlate_off):"""Return a `CountsStatistic` object. Parameters ---------- dataset : `~gammapy.datasets.MapDataset` or `~gammapy.datasets.MapDatasetOnOff` Map dataset. kernel : `~astropy.convolution.Kernel` Kernel. mask : `~gammapy.maps.Map` Mask map. correlate_off : bool Correlate OFF events. Returns ------- counts_statistic : `~gammapy.stats.CashCountsStatistic` or `~gammapy.stats.WStatCountsStatistic` The counts statistic. """# Kernel is modified later make a copy herekernel=copy.deepcopy(kernel)kernel_data=kernel.data/kernel.data.max()# fft convolution adds numerical noise, to ensure integer results we call# np.rintn_on=dataset.counts*maskn_on_conv=np.rint(n_on.convolve(kernel_data).data)ifisinstance(dataset,MapDatasetOnOff):n_off=dataset.counts_off*masknpred_sig=dataset.npred_signal()*maskacceptance_on=dataset.acceptance*maskacceptance_off=dataset.acceptance_off*masknpred_sig_convolve=npred_sig.convolve(kernel_data)ifcorrelate_off:background=dataset.background*maskbackground.data[dataset.acceptance_off==0]=0.0background_conv=background.convolve(kernel_data)n_off=n_off.convolve(kernel_data)withnp.errstate(invalid="ignore",divide="ignore"):alpha=background_conv/n_offelse:acceptance_on_convolve=acceptance_on.convolve(kernel_data)withnp.errstate(invalid="ignore",divide="ignore"):alpha=acceptance_on_convolve/acceptance_offreturnWStatCountsStatistic(n_on_conv.data,n_off.data,alpha.data,npred_sig_convolve.data)else:npred=dataset.npred()*maskbackground_conv=npred.convolve(kernel_data)returnCashCountsStatistic(n_on_conv.data,background_conv.data)
[docs]classExcessMapEstimator(Estimator):"""Computes correlated excess, significance and error maps from a map dataset. If a model is set on the dataset the excess map estimator will compute the excess taking into account the predicted counts of the model. .. note:: By default the excess estimator correlates the off counts as well to avoid artifacts at the edges of the :term:`FoV` for stacked on-off datasets. However, when the on-off dataset has been derived from a ring background estimate, this leads to the off counts being correlated twice. To avoid artifacts and the double correlation, the `ExcessMapEstimator` has to be applied per dataset and the resulting maps need to be stacked, taking the :term:`FoV` cut into account. Parameters ---------- correlation_radius : `~astropy.coordinate.Angle` Correlation radius to use. n_sigma : float Confidence level for the asymmetric errors expressed in number of sigma. n_sigma_ul : float Confidence level for the upper limits expressed in number of sigma. n_sigma_sensitivity : float Confidence level for the sensitivity expressed in number of sigma. gamma_min_sensitivity : float, optional Minimum number of gamma-rays. Default is 10. bkg_syst_fraction_sensitivity : float, optional Fraction of background counts that are above the gamma-ray counts. Default is 0.05. apply_threshold_sensitivity : bool If True, use `bkg_syst_fraction_sensitivity` and `gamma_min_sensitivity` in the sensitivity computation. Default is False which is the same setting as the HGPS catalog. selection_optional : list of str, optional Which additional maps to estimate besides delta TS, significance and symmetric error. Available options are: * "all": all the optional steps are executed * "errn-errp": estimate asymmetric errors. * "ul": estimate upper limits. * "sensitivity": estimate sensitivity for a given significance Default is None so the optional steps are not executed. energy_edges : list of `~astropy.units.Quantity`, optional Edges of the target maps energy bins. The resulting bin edges won't be exactly equal to the input ones, but rather the closest values to the energy axis edges of the parent dataset. Default is None: apply the estimator in each energy bin of the parent dataset. For further explanation see :ref:`estimators`. correlate_off : bool Correlate OFF events. Default is True. spectral_model : `~gammapy.modeling.models.SpectralModel` Spectral model used for the computation of the flux map. If None, a Power Law of index 2 is assumed (default). Examples -------- >>> from gammapy.datasets import MapDataset >>> from gammapy.estimators import ExcessMapEstimator >>> dataset = MapDataset.read("$GAMMAPY_DATA/cta-1dc-gc/cta-1dc-gc.fits.gz") >>> estimator = ExcessMapEstimator(correlation_radius="0.1 deg") >>> result = estimator.run(dataset) >>> print(result) FluxMaps -------- <BLANKLINE> geom : WcsGeom axes : ['lon', 'lat', 'energy'] shape : (320, 240, 1) quantities : ['npred', 'npred_excess', 'counts', 'ts', 'sqrt_ts', 'norm', 'norm_err'] ref. model : pl n_sigma : 1 n_sigma_ul : 2 sqrt_ts_threshold_ul : 2 sed type init : likelihood """tag="ExcessMapEstimator"_available_selection_optional=["errn-errp","ul","sensitivity"]def__init__(self,correlation_radius="0.1 deg",n_sigma=1,n_sigma_ul=2,selection_optional=None,energy_edges=None,correlate_off=True,spectral_model=None,n_sigma_sensitivity=5,gamma_min_sensitivity=10,bkg_syst_fraction_sensitivity=0.05,apply_threshold_sensitivity=False,):self.correlation_radius=correlation_radiusself.n_sigma=n_sigmaself.n_sigma_ul=n_sigma_ulself.n_sigma_sensitivity=n_sigma_sensitivityself.gamma_min_sensitivity=gamma_min_sensitivityself.bkg_syst_fraction_sensitivity=bkg_syst_fraction_sensitivityself.apply_threshold_sensitivity=apply_threshold_sensitivityself.selection_optional=selection_optionalself.energy_edges=energy_edgesself.correlate_off=correlate_offifspectral_modelisNone:spectral_model=PowerLawSpectralModel(index=2)self.spectral_model=spectral_model@propertydefcorrelation_radius(self):returnself._correlation_radius@correlation_radius.setterdefcorrelation_radius(self,correlation_radius):"""Set radius."""self._correlation_radius=Angle(correlation_radius)
[docs]defrun(self,dataset):"""Compute correlated excess, Li & Ma significance and flux maps If a model is set on the dataset the excess map estimator will compute the excess taking into account the predicted counts of the model. Parameters ---------- dataset : `~gammapy.datasets.MapDataset` or `~gammapy.datasets.MapDatasetOnOff` Map dataset. Returns ------- maps : `FluxMaps` Flux maps. """ifnotisinstance(dataset,MapDataset):raiseValueError("Unsupported dataset type. Excess map is not applicable to 1D datasets.")axis=self._get_energy_axis(dataset)resampled_dataset=dataset.resample_energy_axis(energy_axis=axis,name=dataset.name)ifisinstance(dataset,MapDatasetOnOff):resampled_dataset.models=dataset.modelselse:resampled_dataset.background=dataset.npred().resample_axis(axis=axis,weights=dataset.mask_safe)resampled_dataset.models=Noneresult=self.estimate_excess_map(resampled_dataset)returnresult
[docs]defestimate_kernel(self,dataset):"""Get the convolution kernel for the input dataset. Parameters ---------- dataset : `~gammapy.datasets.MapDataset` Input dataset. Returns ------- kernel : `~astropy.convolution.Tophat2DKernel` Kernel. """pixel_size=np.mean(np.abs(dataset.counts.geom.wcs.wcs.cdelt))size=self.correlation_radius.deg/pixel_sizekernel=Tophat2DKernel(size)geom=dataset.counts.geom.to_image()geom=geom.to_odd_npix(max_radius=self.correlation_radius)returnMap.from_geom(geom,data=kernel.array)
[docs]@staticmethoddefestimate_mask_default(dataset):"""Get mask used by the estimator. Parameters ---------- dataset : `~gammapy.datasets.MapDataset` Input dataset. Returns ------- mask : `~gammapy.maps.Map` Mask map. """ifdataset.mask_fit:mask=dataset.maskelifdataset.mask_safe:mask=dataset.mask_safeelse:mask=Map.from_geom(dataset.counts.geom,data=True,dtype=bool)returnmask
[docs]defestimate_exposure_reco_energy(self,dataset,kernel,mask):"""Estimate exposure map in reconstructed energy for a single dataset assuming the given spectral_model shape. Parameters ---------- dataset : `~gammapy.datasets.MapDataset` Map dataset. kernel : `~astropy.convolution.Tophat2DKernel` Kernel. mask : `~gammapy.maps.Map` Mask map. Returns ------- reco_exposure : `Map` Reconstructed exposure map. """ifdataset.exposure:reco_exposure=estimate_exposure_reco_energy(dataset,self.spectral_model,normalize=False)withnp.errstate(invalid="ignore",divide="ignore"):reco_exposure=reco_exposure.convolve(kernel.data)/mask.convolve(kernel.data)else:reco_exposure=1returnreco_exposure
[docs]defestimate_excess_map(self,dataset):"""Estimate excess and test statistic maps for a single dataset. If exposure is defined, a flux map is also computed. Parameters ---------- dataset : `~gammapy.datasets.MapDataset` Map dataset. """kernel=self.estimate_kernel(dataset)geom=dataset.counts.geommask=self.estimate_mask_default(dataset)counts_stat=convolved_map_dataset_counts_statistics(dataset,kernel,mask,self.correlate_off)maps={}maps["npred"]=Map.from_geom(geom,data=counts_stat.n_on)maps["npred_excess"]=Map.from_geom(geom,data=counts_stat.n_sig)maps["counts"]=maps["npred"]maps["ts"]=Map.from_geom(geom,data=counts_stat.ts)maps["sqrt_ts"]=Map.from_geom(geom,data=counts_stat.sqrt_ts)reco_exposure=self.estimate_exposure_reco_energy(dataset,kernel,mask)withnp.errstate(invalid="ignore",divide="ignore"):maps["norm"]=maps["npred_excess"]/reco_exposuremaps["norm_err"]=(Map.from_geom(geom,data=counts_stat.error*self.n_sigma)/reco_exposure)if"errn-errp"inself.selection_optional:maps["norm_errn"]=(Map.from_geom(geom,data=counts_stat.compute_errn(self.n_sigma))/reco_exposure)maps["norm_errp"]=(Map.from_geom(geom,data=counts_stat.compute_errp(self.n_sigma))/reco_exposure)if"ul"inself.selection_optional:maps["norm_ul"]=(Map.from_geom(geom,data=counts_stat.compute_upper_limit(self.n_sigma_ul))/reco_exposure)if"sensitivity"inself.selection_optional:excess_counts=counts_stat.n_sig_matching_significance(self.n_sigma_sensitivity)ifself.apply_threshold_sensitivity:is_gamma_limited=excess_counts<self.gamma_min_sensitivityexcess_counts[is_gamma_limited]=self.gamma_min_sensitivitybkg_syst_limited=(excess_counts<self.bkg_syst_fraction_sensitivity*dataset.background.data)excess_counts[bkg_syst_limited]=(self.bkg_syst_fraction_sensitivity*dataset.background.data[bkg_syst_limited])excess=Map.from_geom(geom=geom,data=excess_counts)maps["norm_sensitivity"]=excess/reco_exposure# return nan values outside maskfornameinmaps:maps[name].data[~mask]=np.nanmeta={"n_sigma":self.n_sigma,"n_sigma_ul":self.n_sigma_ul,"n_sigma_sensitivity":self.n_sigma_sensitivity,"sed_type_init":"likelihood",}ifself.apply_threshold_sensitivity:meta["gamma_min_sensitivity"]=self.gamma_min_sensitivitymeta["bkg_syst_fraction_sensitivity"]=self.bkg_syst_fraction_sensitivityreturnFluxMaps.from_maps(maps=maps,meta=meta,reference_model=SkyModel(self.spectral_model),sed_type="likelihood",)