# Licensed under a 3-clause BSD style license - see LICENSE.rst
import abc
import html
import logging
from copy import deepcopy
from enum import Enum
import numpy as np
from astropy import units as u
from astropy.io import fits
from astropy.table import Table
from astropy.utils import lazyproperty
from gammapy.maps import Map, MapAxes, MapAxis, RegionGeom
from gammapy.utils.integrate import trapz_loglog
from gammapy.utils.interpolation import (
ScaledRegularGridInterpolator,
interpolation_scale,
)
from gammapy.utils.scripts import make_path
from .io import IRF_DL3_HDU_SPECIFICATION, IRF_MAP_HDU_SPECIFICATION, gadf_is_pointlike
log = logging.getLogger(__name__)
[docs]class FoVAlignment(str, Enum):
"""
Orientation of the Field of View Coordinate System.
Currently, only two possible alignments are supported: alignment with
the horizontal coordinate system (ALTAZ) and alignment with the equatorial
coordinate system (RADEC).
"""
ALTAZ = "ALTAZ"
RADEC = "RADEC"
[docs]class IRF(metaclass=abc.ABCMeta):
"""IRF base class for DL3 instrument response functions.
Parameters
----------
axes : list of `MapAxis` or `MapAxes`
Axes.
data : `~numpy.ndarray` or `~astropy.units.Quantity`, optional
Data. Default is 0.
unit : str or `~astropy.units.Unit`, optional
Unit, ignored if data is a Quantity.
Default is "".
is_pointlike : bool, optional
Whether the IRF is point-like. True for point-like IRFs, False for full-enclosure.
Default is False.
fov_alignment : `FoVAlignment`, optional
The orientation of the field of view coordinate system.
Default is FoVAlignment.RADEC.
meta : dict, optional
Metadata dictionary.
Default is None.
"""
default_interp_kwargs = dict(
bounds_error=False,
fill_value=0.0,
)
def __init__(
self,
axes,
data=0,
unit="",
is_pointlike=False,
fov_alignment=FoVAlignment.RADEC,
meta=None,
interp_kwargs=None,
):
axes = MapAxes(axes)
axes.assert_names(self.required_axes)
self._axes = axes
self._fov_alignment = FoVAlignment(fov_alignment)
self._is_pointlike = is_pointlike
if isinstance(data, u.Quantity):
self.data = data.value
if not self.default_unit.is_equivalent(data.unit):
raise ValueError(
f"Error: {data.unit} is not an allowed unit. {self.tag} "
f"requires {self.default_unit} data quantities."
)
else:
self._unit = data.unit
else:
self.data = data
self._unit = unit
self.meta = meta or {}
if interp_kwargs is None:
interp_kwargs = self.default_interp_kwargs.copy()
self.interp_kwargs = interp_kwargs
@property
@abc.abstractmethod
def tag(self):
pass
@property
@abc.abstractmethod
def required_axes(self):
pass
@property
def is_pointlike(self):
"""Whether the IRF is pointlike of full containment."""
return self._is_pointlike
@property
def has_offset_axis(self):
"""Whether the IRF explicitly depends on offset."""
return "offset" in self.required_axes
@property
def fov_alignment(self):
"""Alignment of the field of view coordinate axes, see `FoVAlignment`."""
return self._fov_alignment
@property
def data(self):
return self._data
@data.setter
def data(self, value):
"""Set data.
Parameters
----------
value : `~numpy.ndarray`
Data array.
"""
required_shape = self.axes.shape
if np.isscalar(value):
value = value * np.ones(required_shape)
if isinstance(value, u.Quantity):
raise TypeError("Map data must be a Numpy array. Set unit separately")
if np.shape(value) != required_shape:
raise ValueError(
f"data shape {value.shape} does not match"
f"axes shape {required_shape}"
)
self._data = value
# reset cached interpolators
self.__dict__.pop("_interpolate", None)
self.__dict__.pop("_integrate_rad", None)
[docs] def interp_missing_data(self, axis_name):
"""Interpolate missing data along a given axis."""
data = self.data.copy()
values_scale = self.interp_kwargs.get("values_scale", "lin")
scale = interpolation_scale(values_scale)
axis = self.axes.index(axis_name)
mask = ~np.isfinite(data) | (data == 0.0)
coords = np.where(mask)
xp = np.arange(data.shape[axis])
for coord in zip(*coords):
idx = list(coord)
idx[axis] = slice(None)
fp = data[tuple(idx)]
valid = ~mask[tuple(idx)]
if np.any(valid):
value = np.interp(
x=coord[axis],
xp=xp[valid],
fp=scale(fp[valid]),
left=np.nan,
right=np.nan,
)
if not np.isnan(value):
data[coord] = scale.inverse(value)
self.data = data # reset cached values
@property
def unit(self):
"""Map unit as a `~astropy.units.Unit` object."""
return self._unit
@lazyproperty
def _interpolate(self):
kwargs = self.interp_kwargs.copy()
# Allow extrapolation with in bins
kwargs["fill_value"] = None
points = [a.center for a in self.axes]
points_scale = tuple([a.interp for a in self.axes])
return ScaledRegularGridInterpolator(
points,
self.quantity,
points_scale=points_scale,
**kwargs,
)
@property
def quantity(self):
"""Quantity as a `~astropy.units.Quantity` object."""
return u.Quantity(self.data, unit=self.unit, copy=False)
@quantity.setter
def quantity(self, val):
"""Set data and unit.
Parameters
----------
value : `~astropy.units.Quantity`
Quantity.
"""
val = u.Quantity(val, copy=False)
self.data = val.value
self._unit = val.unit
[docs] def to_unit(self, unit):
"""Convert IRF to different unit.
Parameters
----------
unit : `~astropy.unit.Unit` or str
New unit.
Returns
-------
irf : `IRF`
IRF with new unit and converted data.
"""
data = self.quantity.to_value(unit)
return self.__class__(
self.axes, data=data, meta=self.meta, interp_kwargs=self.interp_kwargs
)
@property
def axes(self):
"""`MapAxes`."""
return self._axes
def __str__(self):
str_ = f"{self.__class__.__name__}\n"
str_ += "-" * len(self.__class__.__name__) + "\n\n"
str_ += f"\taxes : {self.axes.names}\n"
str_ += f"\tshape : {self.data.shape}\n"
str_ += f"\tndim : {len(self.axes)}\n"
str_ += f"\tunit : {self.unit}\n"
str_ += f"\tdtype : {self.data.dtype}\n"
return str_.expandtabs(tabsize=2)
def _repr_html_(self):
try:
return self.to_html()
except AttributeError:
return f"<pre>{html.escape(str(self))}</pre>"
[docs] def evaluate(self, method=None, **kwargs):
"""Evaluate IRF.
Parameters
----------
**kwargs : dict
Coordinates at which to evaluate the IRF.
method : str {'linear', 'nearest'}, optional
Interpolation method.
Returns
-------
array : `~astropy.units.Quantity`
Interpolated values.
"""
# TODO: change to coord dict?
non_valid_axis = set(kwargs).difference(self.axes.names)
if non_valid_axis:
raise ValueError(
f"Not a valid coordinate axis {non_valid_axis}"
f" Choose from: {self.axes.names}"
)
coords_default = self.axes.get_coord()
for key, value in kwargs.items():
coord = kwargs.get(key, value)
if coord is not None:
coords_default[key] = u.Quantity(coord, copy=False)
data = self._interpolate(coords_default.values(), method=method)
if self.interp_kwargs["fill_value"] is not None:
idxs = self.axes.coord_to_idx(coords_default, clip=False)
invalid = np.broadcast_arrays(*[idx == -1 for idx in idxs])
mask = self._mask_out_bounds(invalid)
if not data.shape:
mask = mask.squeeze()
data[mask] = self.interp_kwargs["fill_value"]
data[~np.isfinite(data)] = self.interp_kwargs["fill_value"]
return data
@staticmethod
def _mask_out_bounds(invalid):
return np.any(invalid, axis=0)
[docs] def integrate_log_log(self, axis_name, **kwargs):
"""Integrate along a given axis.
This method uses log-log trapezoidal integration.
Parameters
----------
axis_name : str
Along which axis to integrate.
**kwargs : dict
Coordinates at which to evaluate the IRF.
Returns
-------
array : `~astropy.units.Quantity`
Returns 2D array with axes offset.
"""
axis = self.axes.index(axis_name)
data = self.evaluate(**kwargs, method="linear")
values = kwargs[axis_name]
return trapz_loglog(data, values, axis=axis)
[docs] def cumsum(self, axis_name):
"""Compute cumsum along a given axis.
Parameters
----------
axis_name : str
Along which axis to integrate.
Returns
-------
irf : `~IRF`
Cumsum IRF.
"""
axis = self.axes[axis_name]
axis_idx = self.axes.index(axis_name)
# TODO: the broadcasting should be done by axis.center, axis.bin_width etc.
shape = [1] * len(self.axes)
shape[axis_idx] = -1
values = self.quantity * axis.bin_width.reshape(shape)
if axis_name in ["rad", "offset"]:
# take Jacobian into account
values = 2 * np.pi * axis.center.reshape(shape) * values
data = values.cumsum(axis=axis_idx)
axis_shifted = MapAxis.from_nodes(
axis.edges[1:], name=axis.name, interp=axis.interp
)
axes = self.axes.replace(axis_shifted)
return self.__class__(axes=axes, data=data.value, unit=data.unit)
[docs] def integral(self, axis_name, **kwargs):
"""Compute integral along a given axis.
This method uses interpolation of the cumulative sum.
Parameters
----------
axis_name : str
Along which axis to integrate.
**kwargs : dict
Coordinates at which to evaluate the IRF.
Returns
-------
array : `~astropy.units.Quantity`
Returns 2D array with axes offset.
"""
cumsum = self.cumsum(axis_name=axis_name)
return cumsum.evaluate(**kwargs)
[docs] def normalize(self, axis_name):
"""Normalise data in place along a given axis.
Parameters
----------
axis_name : str
Along which axis to normalize.
"""
cumsum = self.cumsum(axis_name=axis_name).quantity
with np.errstate(invalid="ignore", divide="ignore"):
axis = self.axes.index(axis_name=axis_name)
normed = self.quantity / cumsum.max(axis=axis, keepdims=True)
self.quantity = np.nan_to_num(normed)
[docs] @classmethod
def from_hdulist(cls, hdulist, hdu=None, format="gadf-dl3"):
"""Create from `~astropy.io.fits.HDUList`.
Parameters
----------
hdulist : `~astropy.io.HDUList`
HDU list.
hdu : str
HDU name.
format : {"gadf-dl3"}
Format specification. Default is "gadf-dl3".
Returns
-------
irf : `IRF`
IRF class.
"""
if hdu is None:
hdu = IRF_DL3_HDU_SPECIFICATION[cls.tag]["extname"]
return cls.from_table(Table.read(hdulist[hdu]), format=format)
[docs] @classmethod
def read(cls, filename, hdu=None, format="gadf-dl3"):
"""Read from file.
Parameters
----------
filename : str or `~pathlib.Path`
Filename.
hdu : str
HDU name.
format : {"gadf-dl3"}, optional
Format specification. Default is "gadf-dl3".
Returns
-------
irf : `IRF`
IRF class.
"""
with fits.open(str(make_path(filename)), memmap=False) as hdulist:
return cls.from_hdulist(hdulist, hdu=hdu)
[docs] @classmethod
def from_table(cls, table, format="gadf-dl3"):
"""Read from `~astropy.table.Table`.
Parameters
----------
table : `~astropy.table.Table`
Table with IRF data.
format : {"gadf-dl3"}, optional
Format specification. Default is "gadf-dl3".
Returns
-------
irf : `IRF`
IRF class.
"""
axes = MapAxes.from_table(table=table, format=format)
axes = axes[cls.required_axes]
column_name = IRF_DL3_HDU_SPECIFICATION[cls.tag]["column_name"]
data = table[column_name].quantity[0].transpose()
return cls(
axes=axes,
data=data.value,
meta=table.meta,
unit=data.unit,
is_pointlike=gadf_is_pointlike(table.meta),
fov_alignment=table.meta.get("FOVALIGN", "RADEC"),
)
[docs] def to_table(self, format="gadf-dl3"):
"""Convert to table.
Parameters
----------
format : {"gadf-dl3"}, optional
Format specification. Default is "gadf-dl3".
Returns
-------
table : `~astropy.table.Table`
IRF data table.
"""
table = self.axes.to_table(format=format)
if format == "gadf-dl3":
table.meta = self.meta.copy()
spec = IRF_DL3_HDU_SPECIFICATION[self.tag]
table.meta.update(spec["mandatory_keywords"])
if "FOVALIGN" in table.meta:
table.meta["FOVALIGN"] = self.fov_alignment.value
if self.is_pointlike:
table.meta["HDUCLAS3"] = "POINT-LIKE"
else:
table.meta["HDUCLAS3"] = "FULL-ENCLOSURE"
table[spec["column_name"]] = self.quantity.T[np.newaxis]
else:
raise ValueError(f"Not a valid supported format: '{format}'")
return table
[docs] def to_table_hdu(self, format="gadf-dl3"):
"""Convert to `~astropy.io.fits.BinTableHDU`.
Parameters
----------
format : {"gadf-dl3"}, optional
Format specification. Default is "gadf-dl3".
Returns
-------
hdu : `~astropy.io.fits.BinTableHDU`
IRF data table HDU.
"""
name = IRF_DL3_HDU_SPECIFICATION[self.tag]["extname"]
return fits.BinTableHDU(self.to_table(format=format), name=name)
[docs] def to_hdulist(self, format="gadf-dl3"):
"""
Write the HDU list.
Parameters
----------
format : {"gadf-dl3"}, optional
Format specification. Default is "gadf-dl3".
"""
hdu = self.to_table_hdu(format=format)
return fits.HDUList([fits.PrimaryHDU(), hdu])
[docs] def write(self, filename, *args, **kwargs):
"""Write IRF to fits.
Calls `~astropy.io.fits.HDUList.writeto`, forwarding all arguments.
"""
self.to_hdulist().writeto(str(make_path(filename)), *args, **kwargs)
[docs] def pad(self, pad_width, axis_name, **kwargs):
"""Pad IRF along a given axis.
Parameters
----------
pad_width : {sequence, array_like, int}
Number of pixels padded to the edges of each axis.
axis_name : str
Axis to downsample. By default, spatial axes are padded.
**kwargs : dict
Keyword argument forwarded to `~numpy.pad`.
Returns
-------
irf : `IRF`
Padded IRF.
"""
if np.isscalar(pad_width):
pad_width = (pad_width, pad_width)
idx = self.axes.index(axis_name)
pad_width_np = [(0, 0)] * self.data.ndim
pad_width_np[idx] = pad_width
kwargs.setdefault("mode", "constant")
axes = self.axes.pad(axis_name=axis_name, pad_width=pad_width)
data = np.pad(self.data, pad_width=pad_width_np, **kwargs)
return self.__class__(
data=data, axes=axes, meta=self.meta.copy(), unit=self.unit
)
[docs] def slice_by_idx(self, slices):
"""Slice sub IRF from IRF object.
Parameters
----------
slices : dict
Dictionary of axes names and `slice` object pairs. Contains one
element for each non-spatial dimension. Axes not specified in the
dictionary are kept unchanged.
Returns
-------
sliced : `IRF`
Sliced IRF object.
"""
axes = self.axes.slice_by_idx(slices)
diff = set(self.axes.names).difference(axes.names)
if diff:
diff_slice = {key: value for key, value in slices.items() if key in diff}
raise ValueError(f"Integer indexing not supported, got {diff_slice}")
slices = tuple([slices.get(ax.name, slice(None)) for ax in self.axes])
data = self.data[slices]
return self.__class__(axes=axes, data=data, unit=self.unit, meta=self.meta)
[docs] def is_allclose(self, other, rtol_axes=1e-3, atol_axes=1e-6, **kwargs):
"""Compare two data IRFs for equivalency.
Parameters
----------
other : `~gammapy.irfs.IRF`
The IRF to compare against.
rtol_axes : float, optional
Relative tolerance for the axis comparison.
Default is 1e-3.
atol_axes : float, optional
Absolute tolerance for the axis comparison.
Default is 1e-6.
**kwargs : dict
Keywords passed to `numpy.allclose`.
Returns
-------
is_allclose : bool
Whether the IRF is all close.
"""
if not isinstance(other, self.__class__):
return TypeError(f"Cannot compare {type(self)} and {type(other)}")
if self.data.shape != other.data.shape:
return False
axes_eq = self.axes.is_allclose(other.axes, rtol=rtol_axes, atol=atol_axes)
data_eq = np.allclose(self.quantity, other.quantity, **kwargs)
return axes_eq and data_eq
def __eq__(self, other):
if not isinstance(other, self.__class__):
return False
return self.is_allclose(other=other, rtol=1e-3, rtol_axes=1e-6)
[docs]class IRFMap:
"""IRF map base class for DL4 instrument response functions."""
def __init__(self, irf_map, exposure_map):
self._irf_map = irf_map
self.exposure_map = exposure_map
irf_map.geom.axes.assert_names(self.required_axes)
@property
@abc.abstractmethod
def tag(self):
pass
@property
@abc.abstractmethod
def required_axes(self):
pass
# TODO: add mask safe to IRFMap as a regular attribute and don't derive it from the data
@property
def mask_safe_image(self):
"""Mask safe for the map."""
mask = self._irf_map > (0 * self._irf_map.unit)
return mask.reduce_over_axes(func=np.logical_or)
[docs] def to_region_nd_map(self, region):
"""Extract IRFMap in a given region or position.
If a region is given a mean IRF is computed, if a position is given the
IRF is interpolated.
Parameters
----------
region : `~regions.SkyRegion` or `~astropy.coordinates.SkyCoord`
Region or position where to get the map.
Returns
-------
irf : `IRFMap`
IRF map with region geometry.
"""
if region is None:
region = self._irf_map.geom.center_skydir
# TODO: compute an exposure weighted mean PSF here
kwargs = {"region": region, "func": np.nanmean}
if "energy" in self._irf_map.geom.axes.names:
kwargs["method"] = "nearest"
irf_map = self._irf_map.to_region_nd_map(**kwargs)
if self.exposure_map:
exposure_map = self.exposure_map.to_region_nd_map(**kwargs)
else:
exposure_map = None
return self.__class__(irf_map, exposure_map=exposure_map)
def _get_nearest_valid_position(self, position):
"""Get nearest valid position."""
is_valid = np.nan_to_num(self.mask_safe_image.get_by_coord(position))[0]
if not is_valid and np.any(self.mask_safe_image > 0):
log.warning(
f"Position {position} is outside "
"valid IRF map range, using nearest IRF defined within"
)
position = self.mask_safe_image.mask_nearest_position(position)
return position
[docs] @classmethod
def from_hdulist(
cls,
hdulist,
hdu=None,
hdu_bands=None,
exposure_hdu=None,
exposure_hdu_bands=None,
format="gadf",
):
"""Create from `~astropy.io.fits.HDUList`.
Parameters
----------
hdulist : `~astropy.fits.HDUList`
HDU list.
hdu : str, optional
Name or index of the HDU with the IRF map.
Default is None.
hdu_bands : str, optional
Name or index of the HDU with the IRF map BANDS table.
Default is None.
exposure_hdu : str, optional
Name or index of the HDU with the exposure map data.
Default is None.
exposure_hdu_bands : str, optional
Name or index of the HDU with the exposure map BANDS table.
Default is None.
format : {"gadf", "gtpsf"}, optional
File format. Default is "gadf".
Returns
-------
irf_map : `IRFMap`
IRF map.
"""
output_class = cls
if format == "gadf":
if hdu is None:
hdu = IRF_MAP_HDU_SPECIFICATION[cls.tag]
irf_map = Map.from_hdulist(
hdulist, hdu=hdu, hdu_bands=hdu_bands, format=format
)
if exposure_hdu is None:
exposure_hdu = IRF_MAP_HDU_SPECIFICATION[cls.tag] + "_exposure"
if exposure_hdu in hdulist:
exposure_map = Map.from_hdulist(
hdulist,
hdu=exposure_hdu,
hdu_bands=exposure_hdu_bands,
format=format,
)
else:
exposure_map = None
if cls.tag == "psf_map" and "energy" in irf_map.geom.axes.names:
from .psf import RecoPSFMap
output_class = RecoPSFMap
if cls.tag == "edisp_map" and irf_map.geom.axes[0].name == "energy":
from .edisp import EDispKernelMap
output_class = EDispKernelMap
elif format == "gtpsf":
rad_axis = MapAxis.from_table_hdu(hdulist["THETA"], format=format)
table = Table.read(hdulist["PSF"])
energy_axis_true = MapAxis.from_table(table, format=format)
geom_psf = RegionGeom.create(region=None, axes=[rad_axis, energy_axis_true])
psf_map = Map.from_geom(geom=geom_psf, data=table["Psf"].data, unit="sr-1")
geom_exposure = geom_psf.squash("rad")
exposure_map = Map.from_geom(
geom=geom_exposure, data=table["Exposure"].data, unit="cm2 s"
)
return cls(psf_map=psf_map, exposure_map=exposure_map)
else:
raise ValueError(f"Format {format} not supported")
return output_class(irf_map, exposure_map)
[docs] @classmethod
def read(cls, filename, format="gadf", hdu=None, checksum=False):
"""Read an IRF_map from file and create corresponding object.
Parameters
----------
filename : str or `~pathlib.Path`
File name.
format : {"gadf", "gtpsf"}, optional
File format. Default is "gadf".
hdu : str or int
HDU location. Default is None.
checksum : bool
If True checks both DATASUM and CHECKSUM cards in the file headers. Default is False.
Returns
-------
irf_map : `PSFMap`, `EDispMap` or `EDispKernelMap`
IRF map.
"""
filename = make_path(filename)
# TODO: this will test all hdus and the one specifically of interest
with fits.open(filename, memmap=False, checksum=checksum) as hdulist:
return cls.from_hdulist(hdulist, format=format, hdu=hdu)
[docs] def to_hdulist(self, format="gadf"):
"""Convert to `~astropy.io.fits.HDUList`.
Parameters
----------
format : {"gadf", "gtpsf"}, optional
File format. Default is "gadf".
Returns
-------
hdu_list : `~astropy.io.fits.HDUList`
HDU list.
"""
if format == "gadf":
hdu = IRF_MAP_HDU_SPECIFICATION[self.tag]
hdulist = self._irf_map.to_hdulist(hdu=hdu, format=format)
exposure_hdu = hdu + "_exposure"
if self.exposure_map is not None:
new_hdulist = self.exposure_map.to_hdulist(
hdu=exposure_hdu, format=format
)
hdulist.extend(new_hdulist[1:])
elif format == "gtpsf":
if not self._irf_map.geom.is_region:
raise ValueError(
"Format 'gtpsf' is only supported for region geometries"
)
rad_hdu = self._irf_map.geom.axes["rad"].to_table_hdu(format=format)
psf_table = self._irf_map.geom.axes["energy_true"].to_table(format=format)
psf_table["Exposure"] = self.exposure_map.quantity[..., 0, 0].to("cm^2 s")
psf_table["Psf"] = self._irf_map.quantity[..., 0, 0].to("sr^-1")
psf_hdu = fits.BinTableHDU(data=psf_table, name="PSF")
hdulist = fits.HDUList([fits.PrimaryHDU(), rad_hdu, psf_hdu])
else:
raise ValueError(f"Format {format} not supported")
return hdulist
[docs] def write(self, filename, overwrite=False, format="gadf", checksum=False):
"""Write IRF map to fits.
Parameters
----------
filename : str or `~pathlib.Path`
Filename to write to.
overwrite : bool, optional
Overwrite existing file. Default is False.
format : {"gadf", "gtpsf"}, optional
File format. Default is "gadf".
checksum : bool, optional
When True adds both DATASUM and CHECKSUM cards to the headers written to the file.
Default is False.
"""
hdulist = self.to_hdulist(format=format)
hdulist.writeto(str(filename), overwrite=overwrite, checksum=checksum)
[docs] def stack(self, other, weights=None, nan_to_num=True):
"""Stack IRF map with another one in place.
Parameters
----------
other : `~gammapy.irf.IRFMap`
IRF map to be stacked with this one.
weights : `~gammapy.maps.Map`, optional
Map with stacking weights. Default is None.
nan_to_num: bool, optional
Non-finite values are replaced by zero if True.
Default is True.
"""
if self.exposure_map is None or other.exposure_map is None:
raise ValueError(
f"Missing exposure map for {self.__class__.__name__}.stack"
)
cutout_info = getattr(other._irf_map.geom, "cutout_info", None)
if cutout_info is not None:
slices = cutout_info["parent-slices"]
parent_slices = Ellipsis, slices[0], slices[1]
else:
parent_slices = slice(None)
self._irf_map.data[parent_slices] *= self.exposure_map.data[parent_slices]
self._irf_map.stack(
other._irf_map * other.exposure_map.data,
weights=weights,
nan_to_num=nan_to_num,
)
# stack exposure map
if weights and "energy" in weights.geom.axes.names:
weights = weights.reduce(
axis_name="energy", func=np.logical_or, keepdims=True
)
self.exposure_map.stack(
other.exposure_map, weights=weights, nan_to_num=nan_to_num
)
with np.errstate(invalid="ignore"):
self._irf_map.data[parent_slices] /= self.exposure_map.data[parent_slices]
self._irf_map.data = np.nan_to_num(self._irf_map.data)
[docs] def copy(self):
"""Copy IRF map."""
return deepcopy(self)
[docs] def cutout(self, position, width, mode="trim"):
"""Cutout IRF map.
Parameters
----------
position : `~astropy.coordinates.SkyCoord`
Center position of the cutout region.
width : tuple of `~astropy.coordinates.Angle`
Angular sizes of the region in (lon, lat) in that specific order.
If only one value is passed, a square region is extracted.
mode : {'trim', 'partial', 'strict'}, optional
Mode option for Cutout2D, for details see `~astropy.nddata.utils.Cutout2D`.
Default is "trim".
Returns
-------
cutout : `IRFMap`
Cutout IRF map.
"""
irf_map = self._irf_map.cutout(position, width, mode)
if self.exposure_map:
exposure_map = self.exposure_map.cutout(position, width, mode)
else:
exposure_map = None
return self.__class__(irf_map, exposure_map=exposure_map)
[docs] def downsample(self, factor, axis_name=None, weights=None):
"""Downsample the spatial dimension by a given factor.
Parameters
----------
factor : int
Downsampling factor.
axis_name : str
Axis to downsample. By default, spatial axes are downsampled.
weights : `~gammapy.maps.Map`, optional
Map with weights downsampling. Default is None.
Returns
-------
map : `IRFMap`
Downsampled IRF map.
"""
irf_map = self._irf_map.downsample(
factor=factor, axis_name=axis_name, preserve_counts=True, weights=weights
)
if axis_name is None:
exposure_map = self.exposure_map.downsample(
factor=factor, preserve_counts=False
)
else:
exposure_map = self.exposure_map.copy()
return self.__class__(irf_map, exposure_map=exposure_map)
[docs] def slice_by_idx(self, slices):
"""Slice sub dataset.
The slicing only applies to the maps that define the corresponding axes.
Parameters
----------
slices : dict
Dictionary of axes names and integers or `slice` object pairs. Contains one
element for each non-spatial dimension. For integer indexing the
corresponding axes is dropped from the map. Axes not specified in the
dictionary are kept unchanged.
Returns
-------
map_out : `IRFMap`
Sliced IRF map object.
"""
irf_map = self._irf_map.slice_by_idx(slices=slices)
if "energy_true" in slices and self.exposure_map:
exposure_map = self.exposure_map.slice_by_idx(slices=slices)
else:
exposure_map = self.exposure_map
return self.__class__(irf_map, exposure_map=exposure_map)