# Licensed under a 3-clause BSD style license - see LICENSE.rst
import numpy as np
from gammapy.maps import Map, MapAxis, MapCoord, RegionGeom, WcsGeom
from gammapy.utils.random import InverseCDFSampler, get_random_state
from ..core import IRFMap
from .kernel import EDispKernel
__all__ = ["EDispMap", "EDispKernelMap"]
def get_overlap_fraction(energy_axis, energy_axis_true):
a_min = energy_axis.edges[:-1]
a_max = energy_axis.edges[1:]
b_min = energy_axis_true.edges[:-1][:, np.newaxis]
b_max = energy_axis_true.edges[1:][:, np.newaxis]
xmin = np.fmin(a_max, b_max)
xmax = np.fmax(a_min, b_min)
return (np.clip(xmin - xmax, 0, np.inf) / (b_max - b_min)).to("")
[docs]class EDispMap(IRFMap):
"""Energy dispersion map.
Parameters
----------
edisp_map : `~gammapy.maps.Map`
The input Energy Dispersion Map. Should be a Map with 2 non-spatial axes.
migra and true energy axes should be given in this specific order.
exposure_map : `~gammapy.maps.Map`, optional
Associated exposure map. Needs to have a consistent map geometry.
Examples
--------
::
# Energy dispersion map for CTA data
import numpy as np
from astropy import units as u
from astropy.coordinates import SkyCoord
from gammapy.maps import WcsGeom, MapAxis
from gammapy.irf import EnergyDispersion2D, EffectiveAreaTable2D
from gammapy.makers.utils import make_edisp_map, make_map_exposure_true_energy
# Define energy dispersion map geometry
energy_axis_true = MapAxis.from_edges(np.logspace(-1, 1, 10), unit="TeV", name="energy_true")
migra_axis = MapAxis.from_edges(np.linspace(0, 3, 100), name="migra")
pointing = SkyCoord(0, 0, unit="deg")
geom = WcsGeom.create(
binsz=0.25 * u.deg,
width=10 * u.deg,
skydir=pointing,
axes=[migra_axis, energy_axis_true],
)
# Extract EnergyDispersion2D from CTA 1DC IRF
filename = "$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits"
edisp2D = EnergyDispersion2D.read(filename, hdu="ENERGY DISPERSION")
aeff2d = EffectiveAreaTable2D.read(filename, hdu="EFFECTIVE AREA")
# Create the exposure map
exposure_geom = geom.squash(axis_name="migra")
exposure_map = make_map_exposure_true_energy(pointing, "1 h", aeff2d, exposure_geom)
# Create the EDispMap for the specified pointing
edisp_map = make_edisp_map(edisp2D, pointing, geom, exposure_map)
# Get an Energy Dispersion (1D) at any position in the image
pos = SkyCoord(2.0, 2.5, unit="deg")
energy_axis = MapAxis.from_energy_bounds(0.1, 10, 5, unit="TeV", name="energy")
edisp = edisp_map.get_edisp_kernel(energy_axis, position=pos)
# Write map to disk
edisp_map.write("edisp_map.fits")
"""
tag = "edisp_map"
required_axes = ["migra", "energy_true"]
def __init__(self, edisp_map, exposure_map=None):
super().__init__(irf_map=edisp_map, exposure_map=exposure_map)
@property
def edisp_map(self):
return self._irf_map
@edisp_map.setter
def edisp_map(self, value):
self._irf_map = value
[docs] def normalize(self):
"""Normalize PSF map."""
self.edisp_map.normalize(axis_name="migra")
[docs] def get_edisp_kernel(self, energy_axis, position=None):
"""Get energy dispersion at a given position.
Parameters
----------
energy_axis : `~gammapy.maps.MapAxis`
Reconstructed energy axis.
position : `~astropy.coordinates.SkyCoord`
The target position. Should be a single coordinates.
Returns
-------
edisp : `~gammapy.irf.EnergyDispersion`
The energy dispersion (i.e. rmf object).
"""
edisp_map = self.to_region_nd_map(region=position)
edisp_kernel_map = edisp_map.to_edisp_kernel_map(energy_axis=energy_axis)
return edisp_kernel_map.get_edisp_kernel()
[docs] def to_edisp_kernel_map(self, energy_axis):
"""Convert to map with energy dispersion kernels.
Parameters
----------
energy_axis : `~gammapy.maps.MapAxis`
Reconstructed energy axis.
Returns
-------
edisp : `~gammapy.maps.EDispKernelMap`
Energy dispersion kernel map.
"""
energy_axis_true = self.edisp_map.geom.axes["energy_true"]
geom_image = self.edisp_map.geom.to_image()
geom = geom_image.to_cube([energy_axis, energy_axis_true])
coords = geom.get_coord(sparse=True, mode="edges", axis_name="energy")
migra = coords["energy"] / coords["energy_true"]
coords = {
"skycoord": coords.skycoord,
"energy_true": coords["energy_true"],
"migra": migra,
}
values = self.edisp_map.integral(axis_name="migra", coords=coords)
axis = self.edisp_map.geom.axes.index_data("migra")
data = np.clip(np.diff(values, axis=axis), 0, np.inf)
edisp_kernel_map = Map.from_geom(geom=geom, data=data.to_value(""), unit="")
if self.exposure_map:
geom = geom.squash(axis_name=energy_axis.name)
exposure_map = self.exposure_map.copy(geom=geom)
else:
exposure_map = None
return EDispKernelMap(
edisp_kernel_map=edisp_kernel_map, exposure_map=exposure_map
)
[docs] @classmethod
def from_geom(cls, geom):
"""Create energy dispersion map from geometry.
By default, a diagonal energy dispersion matrix is created.
Parameters
----------
geom : `~gammapy.maps.Geom`
Energy dispersion map geometry.
Returns
-------
edisp_map : `~gammapy.maps.EDispMap`
Energy dispersion map.
"""
if "energy_true" not in [ax.name for ax in geom.axes]:
raise ValueError("EDispMap requires true energy axis")
exposure_map = Map.from_geom(geom=geom.squash(axis_name="migra"), unit="m2 s")
edisp_map = Map.from_geom(geom, unit="")
migra_axis = geom.axes["migra"]
migra_0 = migra_axis.coord_to_pix(1)
# distribute over two pixels
migra = geom.get_idx()[2]
data = np.abs(migra - migra_0)
data = np.where(data < 1, 1 - data, 0)
edisp_map.quantity = data / migra_axis.bin_width.reshape((1, -1, 1, 1))
return cls(edisp_map, exposure_map)
[docs] def sample_coord(self, map_coord, random_state=0, chunk_size=10000):
"""Apply the energy dispersion corrections on the coordinates of a set of simulated events.
Parameters
----------
map_coord : `~gammapy.maps.MapCoord`
Sequence of coordinates and energies of sampled events.
random_state : {int, 'random-seed', 'global-rng', `~numpy.random.RandomState`}, optional
Defines random number generator initialisation.
Passed to `~gammapy.utils.random.get_random_state`.
Default is 0.
chunk_size : int
If set, this will slice the input MapCoord into smaller chunks of chunk_size elements.
Default is 10000.
Returns
-------
`~gammapy.maps.MapCoord`.
Sequence of energy dispersion corrected coordinates of the input map_coord map.
"""
random_state = get_random_state(random_state)
migra_axis = self.edisp_map.geom.axes["migra"]
position = map_coord.skycoord
energy_true = map_coord["energy_true"]
size = position.size
energy_reco = np.ones(size) * map_coord["energy_true"].unit
chunk_size = size if chunk_size is None else chunk_size
index = 0
while index < size:
chunk = slice(index, index + chunk_size, 1)
coord = {
"skycoord": position[chunk].reshape(-1, 1),
"energy_true": energy_true[chunk].reshape(-1, 1),
"migra": migra_axis.center,
}
pdf_edisp = self.edisp_map.interp_by_coord(coord)
sample_edisp = InverseCDFSampler(
pdf_edisp, axis=1, random_state=random_state
)
pix_edisp = sample_edisp.sample_axis()
migra = migra_axis.pix_to_coord(pix_edisp)
energy_reco[chunk] = energy_true[chunk] * migra
index += chunk_size
return MapCoord.create({"skycoord": position, "energy": energy_reco})
[docs] @classmethod
def from_diagonal_response(cls, energy_axis_true, migra_axis=None):
"""Create an all-sky EDisp map with diagonal response.
Parameters
----------
energy_axis_true : `~gammapy.maps.MapAxis`
True energy axis.
migra_axis : `~gammapy.maps.MapAxis`, optional
Migra axis. Default is None.
Returns
-------
edisp_map : `~gammapy.maps.EDispMap`
Energy dispersion map.
"""
migra_res = 1e-5
migra_axis_default = MapAxis.from_bounds(
1 - migra_res, 1 + migra_res, nbin=3, name="migra", node_type="edges"
)
migra_axis = migra_axis or migra_axis_default
geom = WcsGeom.create(
npix=(2, 1), proj="CAR", binsz=180, axes=[migra_axis, energy_axis_true]
)
return cls.from_geom(geom)
[docs] def peek(self, figsize=(15, 5)):
"""Quick-look summary plots.
Plots corresponding to the center of the map.
Parameters
----------
figsize : tuple
Size of figure.
"""
e_true = self.edisp_map.geom.axes[1]
e_reco = MapAxis.from_energy_bounds(
e_true.edges.min(),
e_true.edges.max(),
nbin=len(e_true.center),
name="energy",
)
self.get_edisp_kernel(energy_axis=e_reco).peek(figsize)
[docs]class EDispKernelMap(IRFMap):
"""Energy dispersion kernel map.
Parameters
----------
edisp_kernel_map : `~gammapy.maps.Map`
The input energy dispersion kernel map. Should be a Map with 2 non-spatial axes.
Reconstructed and true energy axes should be given in this specific order.
exposure_map : `~gammapy.maps.Map`, optional
Associated exposure map. Needs to have a consistent map geometry.
"""
tag = "edisp_kernel_map"
required_axes = ["energy", "energy_true"]
def __init__(self, edisp_kernel_map, exposure_map=None):
super().__init__(irf_map=edisp_kernel_map, exposure_map=exposure_map)
@property
def edisp_map(self):
return self._irf_map
@edisp_map.setter
def edisp_map(self, value):
self._irf_map = value
[docs] @classmethod
def from_geom(cls, geom):
"""Create energy dispersion map from geometry.
By default, a diagonal energy dispersion matrix is created.
Parameters
----------
geom : `~gammapy.maps.Geom`
Energy dispersion map geometry.
Returns
-------
edisp_map : `EDispKernelMap`
Energy dispersion kernel map.
"""
geom.axes.assert_names(cls.required_axes)
geom_exposure = geom.squash(axis_name="energy")
exposure = Map.from_geom(geom_exposure, unit="m2 s")
energy_axis = geom.axes["energy"]
energy_axis_true = geom.axes["energy_true"]
data = get_overlap_fraction(energy_axis, energy_axis_true)
edisp_kernel_map = Map.from_geom(geom, unit="")
edisp_kernel_map.quantity += data.reshape(geom.data_shape_axes)
return cls(edisp_kernel_map=edisp_kernel_map, exposure_map=exposure)
[docs] def get_edisp_kernel(self, position=None, energy_axis=None):
"""Get energy dispersion at a given position.
Parameters
----------
position : `~astropy.coordinates.SkyCoord` or `~regions.SkyRegion`, optional
The target position. Should be a single coordinates.
Default is None.
energy_axis : `MapAxis`, optional
Reconstructed energy axis, only used for checking.
Default is None.
Returns
-------
edisp : `~gammapy.irf.EnergyDispersion`
The energy dispersion (i.e. rmf object).
"""
if energy_axis:
assert energy_axis == self.edisp_map.geom.axes["energy"]
if isinstance(self.edisp_map.geom, RegionGeom):
kernel_map = self.edisp_map
else:
if position is None:
position = self.edisp_map.geom.center_skydir
position = self._get_nearest_valid_position(position)
kernel_map = self.edisp_map.to_region_nd_map(region=position)
return EDispKernel(
axes=kernel_map.geom.axes[["energy_true", "energy"]],
data=kernel_map.data[..., 0, 0],
)
[docs] @classmethod
def from_diagonal_response(cls, energy_axis, energy_axis_true, geom=None):
"""Create an energy dispersion map with diagonal response.
Parameters
----------
energy_axis : `~gammapy.maps.MapAxis`
Energy axis.
energy_axis_true : `~gammapy.maps.MapAxis`
True energy axis
geom : `~gammapy.maps.Geom`, optional
The (2D) geometry object to use. If None, an all sky geometry with 2 bins is created.
Default is None.
Returns
-------
edisp_map : `EDispKernelMap`
Energy dispersion kernel map.
"""
if geom is None:
geom = WcsGeom.create(
npix=(2, 1), proj="CAR", binsz=180, axes=[energy_axis, energy_axis_true]
)
else:
geom = geom.to_image().to_cube([energy_axis, energy_axis_true])
return cls.from_geom(geom)
[docs] @classmethod
def from_edisp_kernel(cls, edisp, geom=None):
"""Create an energy dispersion map from the input 1D kernel.
The kernel will be duplicated over all spatial bins.
Parameters
----------
edisp : `~gammapy.irf.EDispKernel`
The input 1D kernel.
geom : `~gammapy.maps.Geom`, optional
The (2D) geometry object to use. If None, an all sky geometry with 2 bins is created.
Default is None.
Returns
-------
edisp_map : `EDispKernelMap`
Energy dispersion kernel map.
"""
edisp_map = cls.from_diagonal_response(
edisp.axes["energy"], edisp.axes["energy_true"], geom=geom
)
edisp_map.edisp_map.data *= 0
edisp_map.edisp_map.data[:, :, ...] = edisp.pdf_matrix[
:, :, np.newaxis, np.newaxis
]
return edisp_map
[docs] @classmethod
def from_gauss(
cls, energy_axis, energy_axis_true, sigma, bias, pdf_threshold=1e-6, geom=None
):
"""Create an energy dispersion map from the input 1D kernel.
The kernel will be duplicated over all spatial bins.
Parameters
----------
energy_axis_true : `~astropy.units.Quantity`
Bin edges of true energy axis.
energy_axis : `~astropy.units.Quantity`
Bin edges of reconstructed energy axis.
bias : float or `~numpy.ndarray`
Center of Gaussian energy dispersion, bias.
sigma : float or `~numpy.ndarray`
RMS width of Gaussian energy dispersion, resolution.
pdf_threshold : float, optional
Zero suppression threshold. Default is 1e-6.
geom : `~gammapy.maps.Geom`, optional
The (2D) geometry object to use. If None, an all sky geometry with 2 bins is created.
Default is None.
Returns
-------
edisp_map : `EDispKernelMap`
Energy dispersion kernel map.
"""
kernel = EDispKernel.from_gauss(
energy_axis=energy_axis,
energy_axis_true=energy_axis_true,
sigma=sigma,
bias=bias,
pdf_threshold=pdf_threshold,
)
return cls.from_edisp_kernel(kernel, geom=geom)
[docs] def to_image(self, weights=None):
"""Return a 2D EdispKernelMap by summing over the reconstructed energy axis.
Parameters
----------
weights: `~gammapy.maps.Map`, optional
Weights to be applied. Default is None.
Returns
-------
edisp : `EDispKernelMap`
Energy dispersion kernel map.
"""
edisp = self.edisp_map.data
if weights:
edisp = edisp * weights.data
data = np.sum(edisp, axis=1, keepdims=True)
geom = self.edisp_map.geom.squash(axis_name="energy")
edisp_map = Map.from_geom(geom=geom, data=data)
return self.__class__(
edisp_kernel_map=edisp_map, exposure_map=self.exposure_map
)
[docs] def resample_energy_axis(self, energy_axis, weights=None):
"""Return a resampled `EDispKernelMap`.
Bins are grouped according to the edges of the reconstructed energy axis provided.
The true energy is left unchanged.
Parameters
----------
energy_axis : `~gammapy.maps.MapAxis`
The reconstructed energy axis to use for the grouping.
weights: `~gammapy.maps.Map`, optional
Weights to be applied. Default is None.
Returns
-------
edisp : `EDispKernelMap`
Energy dispersion kernel map.
"""
new_edisp_map = self.edisp_map.resample_axis(axis=energy_axis, weights=weights)
return self.__class__(
edisp_kernel_map=new_edisp_map, exposure_map=self.exposure_map
)
[docs] def peek(self, figsize=(15, 5)):
"""Quick-look summary plots.
Plots corresponding to the center of the map.
Parameters
----------
figsize : tuple, optional
Size of the figure. Default is (15, 5).
"""
self.get_edisp_kernel().peek(figsize)