# Licensed under a 3-clause BSD style license - see LICENSE.rst
import numpy as np
import astropy.units as u
from astropy.visualization import quantity_support
import matplotlib.pyplot as plt
from gammapy.maps import MapAxes, MapAxis
from gammapy.maps.axes import UNIT_STRING_FORMAT
from gammapy.visualization.utils import add_colorbar
from .core import IRF
__all__ = ["EffectiveAreaTable2D"]
[docs]class EffectiveAreaTable2D(IRF):
"""2D effective area table.
Data format specification: :ref:`gadf:aeff_2d`.
Parameters
----------
energy_axis_true : `MapAxis`
True energy axis.
offset_axis : `MapAxis`
Field of view offset axis.
data : `~astropy.units.Quantity`
Effective area.
meta : dict
Metadata dictionary.
Examples
--------
Here's an example you can use to learn about this class:
>>> from gammapy.irf import EffectiveAreaTable2D
>>> filename = '$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits'
>>> aeff = EffectiveAreaTable2D.read(filename, hdu='EFFECTIVE AREA')
>>> print(aeff)
EffectiveAreaTable2D
--------------------
<BLANKLINE>
axes : ['energy_true', 'offset']
shape : (42, 6)
ndim : 2
unit : m2
dtype : >f4
<BLANKLINE>
Here's another one, created from scratch, without reading a file:
>>> from gammapy.irf import EffectiveAreaTable2D
>>> from gammapy.maps import MapAxis
>>> energy_axis_true = MapAxis.from_energy_bounds(
... "0.1 TeV", "100 TeV", nbin=30, name="energy_true"
... )
>>> offset_axis = MapAxis.from_bounds(0, 5, nbin=4, name="offset")
>>> aeff = EffectiveAreaTable2D(axes=[energy_axis_true, offset_axis], data=1e10, unit="cm2")
>>> print(aeff)
EffectiveAreaTable2D
--------------------
<BLANKLINE>
axes : ['energy_true', 'offset']
shape : (30, 4)
ndim : 2
unit : cm2
dtype : float64
<BLANKLINE>
"""
tag = "aeff_2d"
required_axes = ["energy_true", "offset"]
default_unit = u.m**2
[docs] def plot_energy_dependence(self, ax=None, offset=None, **kwargs):
"""Plot effective area versus energy for a given offset.
Parameters
----------
ax : `~matplotlib.axes.Axes`, optional
Matplotlib axes. Default is None.
offset : `~astropy.coordinates.Angle`, optional
Offset. Default is None.
kwargs : dict
Forwarded to plt.plot().
Returns
-------
ax : `~matplotlib.axes.Axes`
Matplotlib axes.
"""
ax = plt.gca() if ax is None else ax
if offset is None:
off_min, off_max = self.axes["offset"].bounds
offset = np.linspace(off_min, off_max, 4)
energy_axis = self.axes["energy_true"]
for off in offset:
area = self.evaluate(offset=off, energy_true=energy_axis.center)
label = kwargs.pop("label", f"offset = {off:.1f}")
with quantity_support():
ax.plot(energy_axis.center, area, label=label, **kwargs)
energy_axis.format_plot_xaxis(ax=ax)
ax.set_ylabel(
f"Effective Area [{ax.yaxis.units.to_string(UNIT_STRING_FORMAT)}]"
)
ax.legend()
return ax
[docs] def plot_offset_dependence(self, ax=None, energy=None, **kwargs):
"""Plot effective area versus offset for a given energy.
Parameters
----------
ax : `~matplotlib.axes.Axes`, optional
Matplotlib axes. Default is None.
energy : `~astropy.units.Quantity`
Energy.
**kwargs : dict
Keyword argument passed to `~matplotlib.pyplot.plot`.
Returns
-------
ax : `~matplotlib.axes.Axes`
Matplotlib axes.
"""
ax = plt.gca() if ax is None else ax
if energy is None:
energy_axis = self.axes["energy_true"]
e_min, e_max = energy_axis.center[[0, -1]]
energy = np.geomspace(e_min, e_max, 4)
offset_axis = self.axes["offset"]
for ee in energy:
area = self.evaluate(offset=offset_axis.center, energy_true=ee)
area /= np.nanmax(area)
if np.isnan(area).all():
continue
label = f"energy = {ee:.1f}"
with quantity_support():
ax.plot(offset_axis.center, area, label=label, **kwargs)
offset_axis.format_plot_xaxis(ax=ax)
ax.set_ylim(0, 1.1)
ax.set_ylabel("Relative Effective Area")
ax.legend(loc="best")
return ax
[docs] def plot(
self, ax=None, add_cbar=True, axes_loc=None, kwargs_colorbar=None, **kwargs
):
"""Plot effective area image.
Parameters
----------
ax : `~matplotlib.axes.Axes`, optional
Matplotlib axes. Default is None.
add_cbar : bool, optional
Add a colorbar to the plot. Default is True.
axes_loc : dict, optional
Keyword arguments passed to `~mpl_toolkits.axes_grid1.axes_divider.AxesDivider.append_axes`.
kwargs_colorbar : dict, optional
Keyword arguments passed to `~matplotlib.pyplot.colorbar`.
kwargs : dict
Keyword arguments passed to `~matplotlib.pyplot.pcolormesh`.
Returns
-------
ax : `~matplotlib.axes.Axes`
Matplotlib axes.
"""
ax = plt.gca() if ax is None else ax
energy = self.axes["energy_true"]
offset = self.axes["offset"]
aeff = self.evaluate(
offset=offset.center, energy_true=energy.center[:, np.newaxis]
)
vmin, vmax = np.nanmin(aeff.value), np.nanmax(aeff.value)
kwargs.setdefault("cmap", "GnBu")
kwargs.setdefault("edgecolors", "face")
kwargs.setdefault("vmin", vmin)
kwargs.setdefault("vmax", vmax)
kwargs_colorbar = kwargs_colorbar or {}
with quantity_support():
caxes = ax.pcolormesh(energy.edges, offset.edges, aeff.value.T, **kwargs)
energy.format_plot_xaxis(ax=ax)
offset.format_plot_yaxis(ax=ax)
if add_cbar:
label = f"Effective Area [{aeff.unit.to_string(UNIT_STRING_FORMAT)}]"
kwargs_colorbar.setdefault("label", label)
add_colorbar(caxes, ax=ax, axes_loc=axes_loc, **kwargs_colorbar)
return ax
[docs] def peek(self, figsize=(15, 5)):
"""Quick-look summary plots.
Parameters
----------
figsize : tuple, optional
Size of the figure. Default is (15, 5).
"""
ncols = 2 if self.is_pointlike else 3
fig, axes = plt.subplots(nrows=1, ncols=ncols, figsize=figsize)
self.plot(ax=axes[ncols - 1])
self.plot_energy_dependence(ax=axes[0])
if self.is_pointlike is False:
self.plot_offset_dependence(ax=axes[1])
plt.tight_layout()
[docs] @classmethod
def from_parametrization(cls, energy_axis_true=None, instrument="HESS"):
r"""Create parametrized effective area.
Parametrizations of the effective areas of different Cherenkov
telescopes taken from Appendix B of Abramowski et al. (2010), see
https://ui.adsabs.harvard.edu/abs/2010MNRAS.402.1342A .
.. math::
A_{eff}(E) = g_1 \left(\frac{E}{\mathrm{MeV}}\right)^{-g_2}\exp{\left(-\frac{g_3}{E}\right)}
This method does not model the offset dependence of the effective area,
but just assumes that it is constant.
Parameters
----------
energy_axis_true : `MapAxis`, optional
Energy binning, analytic function is evaluated at log centers.
Default is None.
instrument : {'HESS', 'HESS2', 'CTA'}
Instrument name. Default is 'HESS'.
Returns
-------
aeff : `EffectiveAreaTable2D`
Effective area table.
""" # noqa: E501
# Put the parameters g in a dictionary.
# Units: g1 (cm^2), g2 (), g3 (MeV)
pars = {
"HESS": [6.85e9, 0.0891, 5e5],
"HESS2": [2.05e9, 0.0891, 1e5],
"CTA": [1.71e11, 0.0891, 1e5],
}
if instrument not in pars.keys():
ss = f"Unknown instrument: {instrument}\n"
ss += f"Valid instruments: {list(pars.keys())}"
raise ValueError(ss)
if energy_axis_true is None:
energy_axis_true = MapAxis.from_energy_bounds(
"2 GeV", "200 TeV", nbin=20, per_decade=True, name="energy_true"
)
g1, g2, g3 = pars[instrument]
offset_axis = MapAxis.from_edges([0.0, 5.0] * u.deg, name="offset")
axes = MapAxes([energy_axis_true, offset_axis])
coords = axes.get_coord()
energy, offset = coords["energy_true"].to_value("MeV"), coords["offset"]
data = np.ones_like(offset.value) * g1 * energy ** (-g2) * np.exp(-g3 / energy)
# TODO: fake offset dependence?
meta = {"TELESCOP": instrument}
return cls(axes=axes, data=data, unit="cm2", meta=meta)