# Licensed under a 3-clause BSD style license - see LICENSE.rstimportloggingimportnumpyasnpfromastropyimportunitsasufromastropy.coordinatesimportAnglefromgammapy.irfimportEDispKernelMapfromgammapy.mapsimportMapfromgammapy.modeling.modelsimportTemplateSpectralModelfrom.coreimportMaker__all__=["SafeMaskMaker"]log=logging.getLogger(__name__)
[docs]classSafeMaskMaker(Maker):"""Make safe data range mask for a given observation. For more information see :ref:`safe-data-range`. .. warning:: Currently, some methods computing a safe energy range ("aeff-default", "aeff-max" and "edisp-bias") determine a true energy range and apply it to reconstructed energy, effectively neglecting the energy dispersion. Parameters ---------- methods : {"aeff-default", "aeff-max", "edisp-bias", "offset-max", "bkg-peak"} Method to use for the safe energy range. Can be a list with a combination of those. Resulting masks are combined with logical `and`. "aeff-default" uses the energy ranged specified in the DL3 data files, if available. aeff_percent : float Percentage of the maximal effective area to be used as lower energy threshold for method "aeff-max". bias_percent : float Percentage of the energy bias to be used as lower energy threshold for method "edisp-bias". position : `~astropy.coordinates.SkyCoord` Position at which the `aeff_percent` or `bias_percent` are computed. fixed_offset : `~astropy.coordinates.Angle` Offset, calculated from the pointing position, at which the `aeff_percent` or `bias_percent` are computed. If neither the position nor fixed_offset is specified, it uses the position of the center of the map by default. offset_max : str or `~astropy.units.Quantity` Maximum offset cut. irfs : {"DL4", "DL3"} Whether to use reprojected ("DL4") or raw ("DL3") irfs. Default is "DL4". """tag="SafeMaskMaker"available_methods={"aeff-default","aeff-max","edisp-bias","offset-max","bkg-peak",}def__init__(self,methods=["aeff-default"],aeff_percent=10,bias_percent=10,position=None,fixed_offset=None,offset_max="3 deg",irfs="DL4",):methods=set(methods)ifnotmethods.issubset(self.available_methods):difference=methods.difference(self.available_methods)raiseValueError(f"{difference} is not a valid method.")self.methods=methodsself.aeff_percent=aeff_percentself.bias_percent=bias_percentself.position=positionself.fixed_offset=fixed_offsetself.offset_max=Angle(offset_max)ifself.positionandself.fixed_offset:raiseValueError("`position` and `fixed_offset` attributes are mutually exclusive")ifirfsnotin["DL3","DL4"]:ValueError("Invalid option for irfs: expected 'DL3' or 'DL4', got {irfs} instead.")self.irfs=irfs
[docs]defmake_mask_offset_max(self,dataset,observation):"""Make maximum offset mask. Parameters ---------- dataset : `~gammapy.datasets.MapDataset` or `~gammapy.datasets.SpectrumDataset` Dataset to compute mask for. observation : `~gammapy.data.Observation` Observation to compute mask for. Returns ------- mask_safe : `~numpy.ndarray` Maximum offset mask. """ifobservationisNone:raiseValueError("Method 'offset-max' requires an observation object.")separation=dataset._geom.separation(observation.get_pointing_icrs(observation.tmid))returnseparation<self.offset_max
[docs]@staticmethoddefmake_mask_energy_aeff_default(dataset,observation):"""Make safe energy mask from aeff default. Parameters ---------- dataset : `~gammapy.datasets.MapDataset` or `~gammapy.datasets.SpectrumDataset` Dataset to compute mask for. observation : `~gammapy.data.Observation` Observation to compute mask for. Returns ------- mask_safe : `~numpy.ndarray` Safe data range mask. """ifobservationisNone:raiseValueError("Method 'aeff-default' requires an observation object.")energy_max=observation.aeff.meta.get("HI_THRES",None)ifenergy_max:energy_max=energy_max*u.TeVelse:log.warning(f"No default upper safe energy threshold defined for obs {observation.obs_id}")energy_min=observation.aeff.meta.get("LO_THRES",None)ifenergy_min:energy_min=energy_min*u.TeVelse:log.warning(f"No default lower safe energy threshold defined for obs {observation.obs_id}")returndataset._geom.energy_mask(energy_min=energy_min,energy_max=energy_max)
[docs]defmake_mask_energy_aeff_max(self,dataset,observation=None):"""Make safe energy mask from effective area maximum value. Parameters ---------- dataset : `~gammapy.datasets.MapDataset` or `~gammapy.datasets.SpectrumDataset` Dataset to compute mask for. observation : `~gammapy.data.Observation` Observation to compute mask for. It is a mandatory argument when fixed_offset is set. Returns ------- mask_safe : `~numpy.ndarray` Safe data range mask. """ifself.fixed_offsetisnotNoneandobservationisNone:raiseValueError(f"{observation} argument is mandatory with {self.fixed_offset}")geom,exposure=dataset._geom,dataset.exposureifself.irfs=="DL3":offset=self._get_offset(observation)values=observation.aeff.evaluate(offset=offset,energy_true=observation.aeff.axes["energy_true"].edges)valid=observation.aeff.axes["energy_true"].edges[values>self.aeff_percent*np.max(values)/100]energy_min=np.min(valid)else:position=self._get_position(observation,geom)aeff=exposure.get_spectrum(position)/exposure.meta["livetime"]ifnotnp.any(aeff.data>0.0):log.warning(f"Effective area is all zero at [{position.to_string('dms')}]. "f"No safe energy band can be defined for the dataset '{dataset.name}': ""setting `mask_safe` to all False.")returnMap.from_geom(geom,data=False,dtype="bool")model=TemplateSpectralModel.from_region_map(aeff)energy_true=model.energyenergy_min=energy_true[np.where(model.values>0)[0][0]]energy_max=energy_true[-1]aeff_thres=(self.aeff_percent/100)*aeff.quantity.max()inversion=model.inverse(aeff_thres,energy_min=energy_min,energy_max=energy_max)ifnotnp.isnan(inversion[0]):energy_min=inversion[0]returngeom.energy_mask(energy_min=energy_min)
[docs]defmake_mask_energy_edisp_bias(self,dataset,observation=None):"""Make safe energy mask from energy dispersion bias. Parameters ---------- dataset : `~gammapy.datasets.MapDataset` or `~gammapy.datasets.SpectrumDataset` Dataset to compute mask for. observation : `~gammapy.data.Observation` Observation to compute mask for. It is a mandatory argument when fixed_offset is set. Returns ------- mask_safe : `~numpy.ndarray` Safe data range mask. """ifself.fixed_offsetisnotNoneandobservationisNone:raiseValueError(f"{observation} argument is mandatory with {self.fixed_offset}")edisp,geom=dataset.edisp,dataset._geomifself.irfs=="DL3":offset=self._get_offset(observation)edisp=observation.edisp.to_edisp_kernel(offset)else:kwargs=dict()kwargs["position"]=self._get_position(observation,geom)ifnotisinstance(edisp,EDispKernelMap):kwargs["energy_axis"]=dataset._geom.axes["energy"]edisp=edisp.get_edisp_kernel(**kwargs)energy_min=edisp.get_bias_energy(self.bias_percent/100)[0]returngeom.energy_mask(energy_min=energy_min)
[docs]defmake_mask_energy_bkg_peak(self,dataset,observation=None):"""Make safe energy mask based on the binned background. The energy threshold is defined as the lower edge of the energy bin with the highest predicted background rate. This is to ensure analysis in a region where a Powerlaw approximation to the background spectrum is valid. The is motivated by its use in the H.E.S.S. DL3 validation paper: https://arxiv.org/pdf/1910.08088.pdf Parameters ---------- dataset : `~gammapy.datasets.MapDataset` or `~gammapy.datasets.SpectrumDataset` Dataset to compute mask for. observation: `~gammapy.data.Observation` Observation to compute mask for. It is a mandatory argument when DL3 irfs are used. Returns ------- mask_safe : `~numpy.ndarray` Safe data range mask. """geom=dataset._geomifself.irfs=="DL3":bkg=observation.bkg.to_2d()background_spectrum=np.ravel(bkg.integral(axis_name="offset",offset=bkg.axes["offset"].bounds[1]))energy_axis=bkg.axes["energy"]else:background_spectrum=dataset.npred_background().get_spectrum()energy_axis=geom.axes["energy"]idx=np.argmax(background_spectrum.data,axis=0)returngeom.energy_mask(energy_min=energy_axis.edges[idx])
[docs]@staticmethoddefmake_mask_bkg_invalid(dataset):"""Mask non-finite values and zeros values in background maps. Parameters ---------- dataset : `~gammapy.datasets.MapDataset` or `~gammapy.datasets.SpectrumDataset` Dataset to compute mask for. Returns ------- mask_safe : `~numpy.ndarray` Safe data range mask. """bkg=dataset.background.datamask=np.isfinite(bkg)ifnotdataset.stat_type=="wstat":mask&=bkg>0.0returnmask
[docs]defrun(self,dataset,observation=None):"""Make safe data range mask. Parameters ---------- dataset : `~gammapy.datasets.MapDataset` or `~gammapy.datasets.SpectrumDataset` Dataset to compute mask for. observation : `~gammapy.data.Observation` Observation to compute mask for. Returns ------- dataset : `Dataset` Dataset with defined safe range mask. """ifself.irfs=="DL3":ifobservationisNone:raiseValueError("observation argument is mandatory with DL3 irfs")ifdataset.mask_safe:mask_safe=dataset.mask_safe.dataelse:mask_safe=np.ones(dataset._geom.data_shape,dtype=bool)ifdataset.backgroundisnotNone:# apply it first so only clipped values are removed for "bkg-peak"mask_safe&=self.make_mask_bkg_invalid(dataset)if"offset-max"inself.methods:mask_safe&=self.make_mask_offset_max(dataset,observation)if"aeff-default"inself.methods:mask_safe&=self.make_mask_energy_aeff_default(dataset,observation)if"aeff-max"inself.methods:mask_safe&=self.make_mask_energy_aeff_max(dataset,observation)if"edisp-bias"inself.methods:mask_safe&=self.make_mask_energy_edisp_bias(dataset,observation)if"bkg-peak"inself.methods:mask_safe&=self.make_mask_energy_bkg_peak(dataset,observation)dataset.mask_safe=Map.from_geom(dataset._geom,data=mask_safe,dtype=bool)returndataset