.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "tutorials/api/catalog.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_tutorials_api_catalog.py: Source catalogs =============== Access and explore thew most common gamma-ray source catalogs. Introduction ------------ `~gammapy.catalog` provides convenient access to common gamma-ray source catalogs. This module is mostly independent of the rest of Gammapy. Typically, you use it to compare new analyses against catalog results, e.g. overplot the spectral model, or compare the source position. Moreover, as creating a source model and flux points for a given catalog from the FITS table is tedious, `~gammapy.catalog` has this already implemented. So you can create initial source models for your analyses. This is very common for Fermi-LAT, to start with a catalog model. For TeV analysis, especially in crowded Galactic regions, using the HGPS, gamma-cat or 2HWC catalog in this way can also be useful. In this tutorial you will learn how to: - List available catalogs - Load a catalog - Access the source catalog table data - Select a catalog subset or a single source - Get source spectral and spatial models - Get flux points (if available) - Get lightcurves (if available) - Access the source catalog table data - Pretty-print the source information In this tutorial we will show examples using the following catalogs: - `~gammapy.catalog.SourceCatalogHGPS` - `~gammapy.catalog.SourceCatalogGammaCat` - `~gammapy.catalog.SourceCatalog3FHL` - `~gammapy.catalog.SourceCatalog4FGL` All catalog and source classes work the same, as long as some information is available. E.g. trying to access a lightcurve from a catalog and source that does not have that information will return `None`. Further information is available at `~gammapy.catalog`. .. GENERATED FROM PYTHON SOURCE LINES 50-60 .. code-block:: Python import numpy as np import astropy.units as u # %matplotlib inline import matplotlib.pyplot as plt from IPython.display import display from gammapy.catalog import SourceCatalog4FGL from gammapy.catalog import CATALOG_REGISTRY .. GENERATED FROM PYTHON SOURCE LINES 61-63 Check setup ----------- .. GENERATED FROM PYTHON SOURCE LINES 63-68 .. code-block:: Python from gammapy.utils.check import check_tutorials_setup check_tutorials_setup() .. rst-class:: sphx-glr-script-out .. code-block:: none System: python_executable : /home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/bin/python python_version : 3.9.20 machine : x86_64 system : Linux Gammapy package: version : 1.3 path : /home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/lib/python3.9/site-packages/gammapy Other packages: numpy : 1.26.4 scipy : 1.13.1 astropy : 5.2.2 regions : 0.8 click : 8.1.7 yaml : 6.0.2 IPython : 8.18.1 jupyterlab : not installed matplotlib : 3.9.2 pandas : not installed healpy : 1.17.3 iminuit : 2.30.1 sherpa : 4.16.1 naima : 0.10.0 emcee : 3.1.6 corner : 2.2.3 ray : 2.39.0 Gammapy environment variables: GAMMAPY_DATA : /home/runner/work/gammapy-docs/gammapy-docs/gammapy-datasets/1.3 .. GENERATED FROM PYTHON SOURCE LINES 69-76 List available catalogs ----------------------- `~gammapy.catalog` contains a catalog registry `~gammapy.catalog.CATALOG_REGISTRY`, which maps catalog names (e.g. “3fhl”) to catalog classes (e.g. `SourceCatalog3FHL`). .. GENERATED FROM PYTHON SOURCE LINES 76-80 .. code-block:: Python print(CATALOG_REGISTRY) .. rst-class:: sphx-glr-script-out .. code-block:: none Registry -------- SourceCatalogGammaCat: gamma-cat SourceCatalogHGPS : hgps SourceCatalog2HWC : 2hwc SourceCatalog3FGL : 3fgl SourceCatalog4FGL : 4fgl SourceCatalog2FHL : 2fhl SourceCatalog3FHL : 3fhl SourceCatalog3PC : 3PC SourceCatalog3HWC : 3hwc SourceCatalog2PC : 2PC SourceCatalog1LHAASO : 1LHAASO .. GENERATED FROM PYTHON SOURCE LINES 81-89 Load catalogs ------------- If you have run `gammapy download datasets` or `gammapy download tutorials`, you have a copy of the catalogs as FITS files in `$GAMMAPY_DATA/catalogs`, and that is the default location where `~gammapy.catalog` loads from. .. GENERATED FROM PYTHON SOURCE LINES 89-92 .. code-block:: Python # # # !ls -1 $GAMMAPY_DATA/catalogs .. GENERATED FROM PYTHON SOURCE LINES 93-97 .. code-block:: Python # # # !ls -1 $GAMMAPY_DATA/catalogs/fermi .. GENERATED FROM PYTHON SOURCE LINES 98-100 So a catalog can be loaded directly from its corresponding class .. GENERATED FROM PYTHON SOURCE LINES 100-106 .. code-block:: Python catalog = SourceCatalog4FGL() print("Number of sources :", len(catalog.table)) .. rst-class:: sphx-glr-script-out .. code-block:: none Number of sources : 7195 .. GENERATED FROM PYTHON SOURCE LINES 107-111 Note that it loads the default catalog from `$GAMMAPY_DATA/catalogs`, you could pass a different `filename` when creating the catalog. For example here we load an older version of 4FGL catalog: .. GENERATED FROM PYTHON SOURCE LINES 111-116 .. code-block:: Python catalog = SourceCatalog4FGL("$GAMMAPY_DATA/catalogs/fermi/gll_psc_v20.fit.gz") print("Number of sources :", len(catalog.table)) .. rst-class:: sphx-glr-script-out .. code-block:: none Number of sources : 5066 .. GENERATED FROM PYTHON SOURCE LINES 117-124 Alternatively you can load a catalog by name via `CATALOG_REGISTRY.get_cls(name)()` (note the `()` to instantiate a catalog object from the catalog class - only this will load the catalog and be useful), or by importing the catalog class (e.g. `~gammapy.catalog.SourceCatalog3FGL`) directly. The two ways are equivalent, the result will be the same. .. GENERATED FROM PYTHON SOURCE LINES 124-129 .. code-block:: Python # FITS file is loaded catalog = CATALOG_REGISTRY.get_cls("3fgl")() print(catalog) .. rst-class:: sphx-glr-script-out .. code-block:: none SourceCatalog3FGL: name: 3fgl description: LAT 4-year point source catalog sources: 3034 .. GENERATED FROM PYTHON SOURCE LINES 130-131 Let's load the source catalogs we will use throughout this tutorial .. GENERATED FROM PYTHON SOURCE LINES 131-137 .. code-block:: Python catalog_gammacat = CATALOG_REGISTRY.get_cls("gamma-cat")() catalog_3fhl = CATALOG_REGISTRY.get_cls("3fhl")() catalog_4fgl = CATALOG_REGISTRY.get_cls("4fgl")() catalog_hgps = CATALOG_REGISTRY.get_cls("hgps")() .. GENERATED FROM PYTHON SOURCE LINES 138-150 Catalog table ------------- Source catalogs are given as `FITS` files that contain one or multiple tables. However, you can also access the underlying `astropy.table.Table` for a catalog, and the row data as a Python `dict`. This can be useful if you want to do something that is not pre-scripted by the `~gammapy.catalog.SourceCatalog` classes, such as e.g. selecting sources by sky position or association class, or accessing special source information. .. GENERATED FROM PYTHON SOURCE LINES 150-153 .. code-block:: Python print(type(catalog_3fhl.table)) .. rst-class:: sphx-glr-script-out .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 154-156 .. code-block:: Python print(len(catalog_3fhl.table)) .. rst-class:: sphx-glr-script-out .. code-block:: none 1556 .. GENERATED FROM PYTHON SOURCE LINES 157-160 .. code-block:: Python display(catalog_3fhl.table[:3][["Source_Name", "RAJ2000", "DEJ2000"]]) .. rst-class:: sphx-glr-script-out .. code-block:: none Source_Name RAJ2000 DEJ2000 deg deg ------------------ -------- -------- 3FHL J0001.2-0748 0.3107 -7.8075 3FHL J0001.9-4155 0.4849 -41.9303 3FHL J0002.1-6728 0.5283 -67.4825 .. GENERATED FROM PYTHON SOURCE LINES 161-165 Note that the catalogs object include a helper property that gives directly the sources positions as a `~astropy.coordinates.SkyCoord` object (we will show an usage example in the following). .. GENERATED FROM PYTHON SOURCE LINES 165-169 .. code-block:: Python print(catalog_3fhl.positions[:3]) .. rst-class:: sphx-glr-script-out .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 170-184 Source object ------------- Select a source ~~~~~~~~~~~~~~~ The catalog entries for a single source are represented by a `~gammapy.catalog.SourceCatalogObject`. In order to select a source object index into the catalog using `[]`, with a catalog table row index (zero-based, first row is `[0]`), or a source name. If a name is given, catalog table columns with source names and association names (“ASSOC1” in the example below) are searched top to bottom. There is no name resolution web query. .. GENERATED FROM PYTHON SOURCE LINES 184-188 .. code-block:: Python source = catalog_4fgl[49] print(source) .. rst-class:: sphx-glr-script-out .. code-block:: none *** Basic info *** Catalog row index (zero-based) : 49 Source name : 4FGL J0008.9+2509 Extended name : Associations : ASSOC_PROB_BAY : 0.000 ASSOC_PROB_LR : 0.000 Class1 : Class2 : TeVCat flag : N *** Other info *** Significance (100 MeV - 1 TeV) : 4.126 Npred : 571.6 Other flags : 0 *** Position info *** RA : 2.236 deg DEC : 25.154 deg GLON : 110.915 deg GLAT : -36.725 deg Semimajor (68%) : 0.1553 deg Semiminor (68%) : 0.1211 deg Position angle (68%) : -6.18 deg Semimajor (95%) : 0.2518 deg Semiminor (95%) : 0.1963 deg Position angle (95%) : -6.18 deg ROI number : 1344 *** Spectral info *** Spectrum type : PowerLaw Detection significance (100 MeV - 1 TeV) : 4.126 Pivot energy : 407 MeV Spectral index : 2.889 +- 0.166 Flux Density at pivot energy : 1.9e-12 +- 3.85e-13 cm-2 MeV-1 s-1 Integral flux (1 - 100 GeV) : 7.48e-11 +- 2.34e-11 cm-2 s-1 Energy flux (100 MeV - 100 GeV) : 1.97e-12 +- 4.11e-13 erg cm-2 s-1 *** Spectral points *** e_min e_max flux flux_errn flux_errp e2dnde e2dnde_errn e2dnde_errp is_ul flux_ul e2dnde_ul sqrt_ts MeV MeV 1 / (cm2 s) 1 / (cm2 s) 1 / (cm2 s) erg / (cm2 s) erg / (cm2 s) erg / (cm2 s) 1 / (cm2 s) erg / (cm2 s) ---------- ----------- ----------- ----------- ----------- ------------- ------------- ------------- ----- ----------- ------------- ------- 50.000 100.000 1.601e-09 nan 1.348e-08 2.477e-13 nan 2.086e-12 True 2.856e-08 4.419e-12 0.015 100.000 300.000 1.539e-09 nan 2.036e-09 3.398e-13 nan 4.498e-13 True 5.611e-09 1.239e-12 0.713 300.000 1000.000 7.810e-10 2.102e-10 2.147e-10 4.852e-13 1.306e-13 1.334e-13 False nan nan 3.905 1000.000 3000.000 7.227e-11 3.036e-11 3.307e-11 1.596e-13 6.706e-14 7.305e-14 False nan nan 2.585 3000.000 10000.000 3.177e-12 nan 9.940e-12 1.974e-14 nan 6.175e-14 True 2.306e-11 1.432e-13 0.400 10000.000 30000.000 8.771e-15 nan 4.719e-12 1.938e-16 nan 1.042e-13 True 9.447e-12 2.087e-13 0.000 30000.000 100000.000 6.142e-16 nan 2.774e-12 3.816e-17 nan 1.723e-13 True 5.548e-12 3.447e-13 0.000 100000.000 1000000.000 9.286e-16 nan 3.149e-12 1.211e-16 nan 4.107e-13 True 6.299e-12 8.215e-13 0.000 *** Lightcurve info *** Lightcurve measured in the energy band: 100 MeV - 100 GeV Variability index : 20.426 No peak measured for this source. .. GENERATED FROM PYTHON SOURCE LINES 189-191 .. code-block:: Python print(source.row_index, source.name) .. rst-class:: sphx-glr-script-out .. code-block:: none 49 4FGL J0008.9+2509 .. GENERATED FROM PYTHON SOURCE LINES 192-195 .. code-block:: Python source = catalog_4fgl["4FGL J0010.8-2154"] print(source.row_index, source.name) .. rst-class:: sphx-glr-script-out .. code-block:: none 64 4FGL J0010.8-2154 .. GENERATED FROM PYTHON SOURCE LINES 196-198 .. code-block:: Python print(source.data["ASSOC1"]) .. rst-class:: sphx-glr-script-out .. code-block:: none PKS 0008-222 .. GENERATED FROM PYTHON SOURCE LINES 199-203 .. code-block:: Python source = catalog_4fgl["PKS 0008-222"] print(source.row_index, source.name) .. rst-class:: sphx-glr-script-out .. code-block:: none 64 4FGL J0010.8-2154 .. GENERATED FROM PYTHON SOURCE LINES 204-213 Note that you can also do a `for source in catalog` loop, to find or process sources of interest. Source information ~~~~~~~~~~~~~~~~~~ The source objects have a `data` property that contains the information of the catalog row corresponding to the source. .. GENERATED FROM PYTHON SOURCE LINES 213-216 .. code-block:: Python print(source.data["Npred"]) .. rst-class:: sphx-glr-script-out .. code-block:: none 336.59976 .. GENERATED FROM PYTHON SOURCE LINES 217-220 .. code-block:: Python print(source.data["GLON"], source.data["GLAT"]) .. rst-class:: sphx-glr-script-out .. code-block:: none 60.28118133544922 deg -79.40050506591797 deg .. GENERATED FROM PYTHON SOURCE LINES 221-224 As for the catalog object, the source object has a `position` property. .. GENERATED FROM PYTHON SOURCE LINES 224-228 .. code-block:: Python print(source.position.galactic) .. rst-class:: sphx-glr-script-out .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 229-239 Select a catalog subset ----------------------- The catalog objects support selection using boolean arrays (of the same length), so one can create a new catalog as a subset of the main catalog that verify a set of conditions. In the next example we selection only few of the brightest sources brightest sources in the 100 to 200 GeV energy band. .. GENERATED FROM PYTHON SOURCE LINES 239-247 .. code-block:: Python mask_bright = np.zeros(len(catalog_3fhl.table), dtype=bool) for k, source in enumerate(catalog_3fhl): flux = source.spectral_model().integral(100 * u.GeV, 200 * u.GeV).to("cm-2 s-1") if flux > 1e-10 * u.Unit("cm-2 s-1"): mask_bright[k] = True print(f"{source.row_index:<7d} {source.name:20s} {flux:.3g}") .. rst-class:: sphx-glr-script-out .. code-block:: none 352 3FHL J0534.5+2201 2.99e-10 1 / (cm2 s) 553 3FHL J0851.9-4620e 1.24e-10 1 / (cm2 s) 654 3FHL J1036.3-5833e 1.57e-10 1 / (cm2 s) 691 3FHL J1104.4+3812 3.34e-10 1 / (cm2 s) 1111 3FHL J1653.8+3945 1.27e-10 1 / (cm2 s) 1219 3FHL J1824.5-1351e 1.77e-10 1 / (cm2 s) 1361 3FHL J2028.6+4110e 1.75e-10 1 / (cm2 s) .. GENERATED FROM PYTHON SOURCE LINES 248-251 .. code-block:: Python catalog_3fhl_bright = catalog_3fhl[mask_bright] print(catalog_3fhl_bright) .. rst-class:: sphx-glr-script-out .. code-block:: none SourceCatalog3FHL: name: 3fhl description: LAT third high-energy source catalog sources: 7 .. GENERATED FROM PYTHON SOURCE LINES 252-255 .. code-block:: Python print(catalog_3fhl_bright.table["Source_Name"]) .. rst-class:: sphx-glr-script-out .. code-block:: none Source_Name ------------------ 3FHL J0534.5+2201 3FHL J0851.9-4620e 3FHL J1036.3-5833e 3FHL J1104.4+3812 3FHL J1653.8+3945 3FHL J1824.5-1351e 3FHL J2028.6+4110e .. GENERATED FROM PYTHON SOURCE LINES 256-260 Similarly we can select only sources within a region of interest. Here for example we use the `position` property of the catalog object to select sources within 5 degrees from “PKS 0008-222”: .. GENERATED FROM PYTHON SOURCE LINES 260-268 .. code-block:: Python source = catalog_4fgl["PKS 0008-222"] mask_roi = source.position.separation(catalog_4fgl.positions) < 5 * u.deg catalog_4fgl_roi = catalog_4fgl[mask_roi] print("Number of sources :", len(catalog_4fgl_roi.table)) .. rst-class:: sphx-glr-script-out .. code-block:: none Number of sources : 16 .. GENERATED FROM PYTHON SOURCE LINES 269-285 Source models ------------- The `~gammapy.catalog.SourceCatalogObject` classes have a `~gammapy.catalog.SourceCatalogObject.sky_model()` model which creates a `~gammapy.modeling.models.SkyModel` object, with model parameter values and parameter errors from the catalog filled in. In most cases, the `~gammapy.catalog.SourceCatalogObject.spectral_model()` method provides the `~gammapy.modeling.models.SpectralModel` part of the sky model, and the `~gammapy.catalog.SourceCatalogObject.spatial_model()` method the `~gammapy.modeling.models.SpatialModel` part individually. We use the `~gammapy.catalog.SourceCatalog3FHL` for the examples in this section. .. GENERATED FROM PYTHON SOURCE LINES 285-291 .. code-block:: Python source = catalog_4fgl["PKS 2155-304"] model = source.sky_model() print(model) .. rst-class:: sphx-glr-script-out .. code-block:: none SkyModel Name : 4FGL J2158.8-3013 Datasets names : None Spectral model type : LogParabolaSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: amplitude : 1.26e-11 +/- 1.3e-13 1 / (cm2 MeV s) reference (frozen): 1160.973 MeV alpha : 1.773 +/- 0.01 beta : 0.042 +/- 0.00 lon_0 : 329.714 +/- 0.00 deg lat_0 : -30.225 +/- 0.00 deg .. GENERATED FROM PYTHON SOURCE LINES 292-294 .. code-block:: Python print(model) .. rst-class:: sphx-glr-script-out .. code-block:: none SkyModel Name : 4FGL J2158.8-3013 Datasets names : None Spectral model type : LogParabolaSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: amplitude : 1.26e-11 +/- 1.3e-13 1 / (cm2 MeV s) reference (frozen): 1160.973 MeV alpha : 1.773 +/- 0.01 beta : 0.042 +/- 0.00 lon_0 : 329.714 +/- 0.00 deg lat_0 : -30.225 +/- 0.00 deg .. GENERATED FROM PYTHON SOURCE LINES 295-297 .. code-block:: Python print(model.spatial_model) .. rst-class:: sphx-glr-script-out .. code-block:: none PointSpatialModel type name value unit error min max frozen link prior ---- ----- ----------- ---- --------- ---------- --------- ------ ---- ----- lon_0 3.2971e+02 deg 3.735e-03 nan nan False lat_0 -3.0225e+01 deg 3.227e-03 -9.000e+01 9.000e+01 False .. GENERATED FROM PYTHON SOURCE LINES 298-300 .. code-block:: Python print(model.spectral_model) .. rst-class:: sphx-glr-script-out .. code-block:: none LogParabolaSpectralModel type name value unit error min max frozen link prior ---- --------- ---------- -------------- --------- --- --- ------ ---- ----- amplitude 1.2591e-11 cm-2 MeV-1 s-1 1.317e-13 nan nan False reference 1.1610e+03 MeV 0.000e+00 nan nan True alpha 1.7733e+00 1.029e-02 nan nan False beta 4.1893e-02 3.743e-03 nan nan False .. GENERATED FROM PYTHON SOURCE LINES 301-308 .. code-block:: Python energy_bounds = (100 * u.MeV, 100 * u.GeV) opts = dict(sed_type="e2dnde", yunits=u.Unit("TeV cm-2 s-1")) model.spectral_model.plot(energy_bounds, **opts) model.spectral_model.plot_error(energy_bounds, **opts) plt.show() .. image-sg:: /tutorials/api/images/sphx_glr_catalog_001.png :alt: catalog :srcset: /tutorials/api/images/sphx_glr_catalog_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 309-314 You can create initial source models for your analyses using the `~gammapy.catalog.SourceCatalog.to_models()` method of the catalog objects. Here for example we create a `~gammapy.modeling.models.Models` object from the 4FGL catalog subset we previously defined: .. GENERATED FROM PYTHON SOURCE LINES 314-319 .. code-block:: Python models_4fgl_roi = catalog_4fgl_roi.to_models() print(models_4fgl_roi) .. rst-class:: sphx-glr-script-out .. code-block:: none Models Component 0: SkyModel Name : 4FGL J0001.8-2153 Datasets names : None Spectral model type : PowerLawSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: index : 1.906 +/- 0.19 amplitude : 4.47e-15 +/- 1.2e-15 1 / (cm2 MeV s) reference (frozen): 4281.748 MeV lon_0 : 0.465 +/- 0.04 deg lat_0 : -21.886 +/- 0.05 deg Component 1: SkyModel Name : 4FGL J0003.3-1928 Datasets names : None Spectral model type : LogParabolaSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: amplitude : 4.73e-13 +/- 4.5e-14 1 / (cm2 MeV s) reference (frozen): 1064.702 MeV alpha : 2.136 +/- 0.12 beta : 0.211 +/- 0.08 lon_0 : 0.846 +/- 0.03 deg lat_0 : -19.468 +/- 0.03 deg Component 2: SkyModel Name : 4FGL J0006.3-1813 Datasets names : None Spectral model type : PowerLawSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: index : 2.278 +/- 0.21 amplitude : 2.94e-14 +/- 7.3e-15 1 / (cm2 MeV s) reference (frozen): 1808.240 MeV lon_0 : 1.578 +/- 0.03 deg lat_0 : -18.229 +/- 0.03 deg Component 3: SkyModel Name : 4FGL J0008.4-2339 Datasets names : None Spectral model type : PowerLawSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: index : 1.810 +/- 0.10 amplitude : 1.01e-14 +/- 1.5e-15 1 / (cm2 MeV s) reference (frozen): 4481.370 MeV lon_0 : 2.111 +/- 0.02 deg lat_0 : -23.651 +/- 0.02 deg Component 4: SkyModel Name : 4FGL J0010.2-2431 Datasets names : None Spectral model type : PowerLawSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: index : 2.176 +/- 0.18 amplitude : 1.98e-14 +/- 4.9e-15 1 / (cm2 MeV s) reference (frozen): 2131.147 MeV lon_0 : 2.560 +/- 0.03 deg lat_0 : -24.524 +/- 0.04 deg Component 5: SkyModel Name : 4FGL J0010.8-2154 Datasets names : None Spectral model type : PowerLawSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: index : 2.344 +/- 0.15 amplitude : 8.39e-14 +/- 1.6e-14 1 / (cm2 MeV s) reference (frozen): 1299.988 MeV lon_0 : 2.717 +/- 0.05 deg lat_0 : -21.900 +/- 0.05 deg Component 6: SkyModel Name : 4FGL J0013.9-1854 Datasets names : None Spectral model type : PowerLawSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: index : 1.905 +/- 0.08 amplitude : 2.58e-14 +/- 2.9e-15 1 / (cm2 MeV s) reference (frozen): 3299.164 MeV lon_0 : 3.480 +/- 0.02 deg lat_0 : -18.912 +/- 0.02 deg Component 7: SkyModel Name : 4FGL J0021.5-2221 Datasets names : None Spectral model type : LogParabolaSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: amplitude : 6.85e-13 +/- 1.5e-13 1 / (cm2 MeV s) reference (frozen): 620.905 MeV alpha : 2.662 +/- 0.23 beta : 0.268 +/- 0.16 lon_0 : 5.383 +/- 0.06 deg lat_0 : -22.358 +/- 0.08 deg Component 8: SkyModel Name : 4FGL J0021.5-2552 Datasets names : None Spectral model type : LogParabolaSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: amplitude : 8.68e-13 +/- 5.4e-14 1 / (cm2 MeV s) reference (frozen): 969.357 MeV alpha : 2.009 +/- 0.07 beta : 0.082 +/- 0.03 lon_0 : 5.391 +/- 0.01 deg lat_0 : -25.868 +/- 0.01 deg Component 9: SkyModel Name : 4FGL J0022.1-1854 Datasets names : None Spectral model type : LogParabolaSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: amplitude : 3.88e-13 +/- 2.4e-14 1 / (cm2 MeV s) reference (frozen): 1482.670 MeV alpha : 1.788 +/- 0.07 beta : 0.101 +/- 0.03 lon_0 : 5.535 +/- 0.01 deg lat_0 : -18.907 +/- 0.01 deg Component 10: SkyModel Name : 4FGL J0025.0-2320 Datasets names : None Spectral model type : PowerLawSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: index : 2.180 +/- 0.20 amplitude : 1.36e-14 +/- 3.7e-15 1 / (cm2 MeV s) reference (frozen): 2399.210 MeV lon_0 : 6.268 +/- 0.04 deg lat_0 : -23.338 +/- 0.05 deg Component 11: SkyModel Name : 4FGL J0025.2-2231 Datasets names : None Spectral model type : PowerLawSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: index : 2.147 +/- 0.25 amplitude : 6.93e-15 +/- 2.1e-15 1 / (cm2 MeV s) reference (frozen): 3071.779 MeV lon_0 : 6.303 +/- 0.03 deg lat_0 : -22.533 +/- 0.03 deg Component 12: SkyModel Name : 4FGL J0031.0-2327 Datasets names : None Spectral model type : LogParabolaSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: amplitude : 1.10e-13 +/- 1.7e-14 1 / (cm2 MeV s) reference (frozen): 1686.153 MeV alpha : 1.841 +/- 0.22 beta : 0.551 +/- 0.18 lon_0 : 7.756 +/- 0.04 deg lat_0 : -23.458 +/- 0.05 deg Component 13: SkyModel Name : 4FGL J2357.7-1937 Datasets names : None Spectral model type : PowerLawSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: index : 2.220 +/- 0.19 amplitude : 2.59e-14 +/- 6.2e-15 1 / (cm2 MeV s) reference (frozen): 1978.430 MeV lon_0 : 359.430 +/- 0.04 deg lat_0 : -19.619 +/- 0.04 deg Component 14: SkyModel Name : 4FGL J2358.5-1808 Datasets names : None Spectral model type : LogParabolaSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: amplitude : 1.60e-13 +/- 1.3e-14 1 / (cm2 MeV s) reference (frozen): 1980.032 MeV alpha : 1.783 +/- 0.09 beta : 0.074 +/- 0.03 lon_0 : 359.639 +/- 0.01 deg lat_0 : -18.141 +/- 0.01 deg Component 15: SkyModel Name : 4FGL J2359.3-2049 Datasets names : None Spectral model type : PowerLawSpectralModel Spatial model type : PointSpatialModel Temporal model type : Parameters: index : 1.928 +/- 0.07 amplitude : 4.24e-14 +/- 3.9e-15 1 / (cm2 MeV s) reference (frozen): 2930.842 MeV lon_0 : 359.836 +/- 0.02 deg lat_0 : -20.819 +/- 0.02 deg .. GENERATED FROM PYTHON SOURCE LINES 320-330 Specificities of the HGPS catalog --------------------------------- Using the `~gammapy.catalog.SourceCatalog.to_models()` method for the `~gammapy.catalog.SourceCatalogHGPS` will return only the models components of the sources retained in the main catalog, several candidate objects appears only in the Gaussian components table (see section 4.9 of the HGPS paper, https://arxiv.org/abs/1804.02432). To access these components you can do the following: .. GENERATED FROM PYTHON SOURCE LINES 330-337 .. code-block:: Python discarded_ind = np.where( ["Discarded" in _ for _ in catalog_hgps.table_components["Component_Class"]] )[0] discarded_table = catalog_hgps.table_components[discarded_ind] .. GENERATED FROM PYTHON SOURCE LINES 338-341 There is no spectral model available for these components but you can access their spatial models: .. GENERATED FROM PYTHON SOURCE LINES 341-347 .. code-block:: Python discarded_spatial = [ catalog_hgps.gaussian_component(idx).spatial_model() for idx in discarded_ind ] .. GENERATED FROM PYTHON SOURCE LINES 348-354 In addition to the source components the HGPS catalog include a large scale diffuse component built by fitting a gaussian model in a sliding window along the Galactic plane. Information on this model can be accessed via the properties `~gammapy.catalog.SourceCatalogHGPS.table_large_scale_component` and `~gammapy.catalog.SourceCatalogHGPS.large_scale_component` of `~gammapy.catalog.SourceCatalogHGPS`. .. GENERATED FROM PYTHON SOURCE LINES 354-361 .. code-block:: Python # here we show the 5 first elements of the table display(catalog_hgps.table_large_scale_component[:5]) # you can also try : # help(catalog_hgps.large_scale_component) .. rst-class:: sphx-glr-script-out .. code-block:: none GLON GLAT GLAT_Err ... Surface_Brightness_Err Width Width_Err deg deg deg ... 1 / (cm2 s sr) deg deg ---------- --------- -------- ... ---------------------- -------- --------- 270.000000 0.205357 0.251932 ... 4.064108e-10 0.269385 0.137990 272.959198 -0.120154 0.058201 ... 7.346488e-10 0.088742 0.041882 275.918365 -0.095232 0.089881 ... 6.117877e-10 0.167219 0.111797 278.877563 -0.257642 0.065071 ... 5.230542e-10 0.156525 0.056130 281.836731 -0.283487 0.066442 ... 4.336444e-10 0.205192 0.049676 .. GENERATED FROM PYTHON SOURCE LINES 362-368 Flux points ----------- The flux points are available via the `~gammapy.catalog.SourceCatalogObject.flux_points` property as a `~gammapy.estimators.FluxPoints` object. .. GENERATED FROM PYTHON SOURCE LINES 368-375 .. code-block:: Python source = catalog_4fgl["PKS 2155-304"] flux_points = source.flux_points print(flux_points) .. rst-class:: sphx-glr-script-out .. code-block:: none FluxPoints ---------- geom : RegionGeom axes : ['lon', 'lat', 'energy'] shape : (1, 1, 8) quantities : ['norm', 'norm_errp', 'norm_errn', 'norm_ul', 'sqrt_ts', 'is_ul'] ref. model : lp n_sigma : 1 n_sigma_ul : 2 sqrt_ts_threshold_ul : 1 sed type init : flux .. GENERATED FROM PYTHON SOURCE LINES 376-378 .. code-block:: Python display(flux_points.to_table(sed_type="flux")) .. rst-class:: sphx-glr-script-out .. code-block:: none e_ref e_min e_max ... sqrt_ts is_ul MeV MeV MeV ... ------------------ ------------------ ------------------ ... --------- ----- 70.71067811865478 49.99999999999999 100.00000000000004 ... 3.1173775 False 173.20508075688775 100.00000000000004 299.99999999999994 ... 25.332525 False 547.722557505166 299.99999999999994 999.9999999999998 ... 97.62258 False 1732.0508075688763 999.9999999999998 2999.9999999999977 ... 141.84529 False 5477.225575051666 2999.9999999999977 10000.00000000001 ... 135.62503 False 17320.50807568877 10000.00000000001 30000.000000000007 ... 97.068245 False 54772.255750516626 30000.000000000007 100000.00000000001 ... 62.05227 False 316227.7660168382 100000.00000000001 999999.9999999995 ... 31.402712 False .. GENERATED FROM PYTHON SOURCE LINES 379-383 .. code-block:: Python flux_points.plot(sed_type="e2dnde") plt.show() .. image-sg:: /tutorials/api/images/sphx_glr_catalog_002.png :alt: catalog :srcset: /tutorials/api/images/sphx_glr_catalog_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 384-391 Lightcurves ----------- The Fermi catalogs contain lightcurves for each source. It is available via the `source.lightcurve` method as a `~gammapy.estimators.FluxPoints` object with a time axis. .. GENERATED FROM PYTHON SOURCE LINES 391-396 .. code-block:: Python lightcurve = catalog_4fgl["4FGL J0349.8-2103"].lightcurve() print(lightcurve) .. rst-class:: sphx-glr-script-out .. code-block:: none FluxPoints ---------- geom : RegionGeom axes : ['lon', 'lat', 'energy', 'time'] shape : (1, 1, 1, 14) quantities : ['norm', 'norm_errp', 'norm_errn', 'norm_ul', 'ts'] ref. model : lp n_sigma : 1 n_sigma_ul : 2 sqrt_ts_threshold_ul : 1 sed type init : flux .. GENERATED FROM PYTHON SOURCE LINES 397-399 .. code-block:: Python display(lightcurve.to_table(format="lightcurve", sed_type="flux")) .. rst-class:: sphx-glr-script-out .. code-block:: none time_min time_max e_ref ... sqrt_ts is_ul MeV ... ------------------ ------------------ ------------------ ... --------- ----- 54682.65603794185 55045.301668796295 3872.9833462074166 ... 30.809505 False 55045.301668796295 55410.57944657408 3872.9833462074166 ... 14.118355 False 55410.57944657408 55775.85722435185 3872.9833462074166 ... 6.6116853 False 55775.85722435185 56141.13500212963 3872.9833462074166 ... 8.432878 False 56141.13500212963 56506.412779907405 3872.9833462074166 ... 8.800932 False 56506.412779907405 56871.690557685186 3872.9833462074166 ... 9.687685 False 56871.690557685186 57236.96833546296 3872.9833462074166 ... 13.500249 False 57236.96833546296 57602.24611324074 3872.9833462074166 ... 6.146472 False 57602.24611324074 57967.52389101852 3872.9833462074166 ... 8.539397 False 57967.52389101852 58332.801668796295 3872.9833462074166 ... 9.76739 False 58332.801668796295 58698.07944657408 3872.9833462074166 ... 4.498784 False 58698.07944657408 59063.35722435185 3872.9833462074166 ... 5.3674884 False 59063.35722435185 59428.63500212963 3872.9833462074166 ... 2.8593054 False 59428.63500212963 59793.912779907405 3872.9833462074166 ... 6.248122 False .. GENERATED FROM PYTHON SOURCE LINES 400-406 .. code-block:: Python plt.figure(figsize=(8, 6)) plt.subplots_adjust(bottom=0.2, left=0.2) lightcurve.plot() plt.show() .. image-sg:: /tutorials/api/images/sphx_glr_catalog_003.png :alt: catalog :srcset: /tutorials/api/images/sphx_glr_catalog_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 407-412 Pretty-print source information ------------------------------- A source object has a nice string representation that you can print. .. GENERATED FROM PYTHON SOURCE LINES 412-417 .. code-block:: Python source = catalog_hgps["MSH 15-52"] print(source) .. rst-class:: sphx-glr-script-out .. code-block:: none *** Basic info *** Catalog row index (zero-based) : 18 Source name : HESS J1514-591 Analysis reference : HGPS Source class : PWN Identified object : MSH 15-52 Gamma-Cat id : 79 *** Info from map analysis *** RA : 228.499 deg = 15h14m00s DEC : -59.161 deg = -59d09m41s GLON : 320.315 +/- 0.008 deg GLAT : -1.188 +/- 0.007 deg Position Error (68%) : 0.020 deg Position Error (95%) : 0.033 deg ROI number : 13 Spatial model : 3-Gaussian Spatial components : HGPSC 023, HGPSC 024, HGPSC 025 TS : 1763.4 sqrt(TS) : 42.0 Size : 0.145 +/- 0.026 (UL: 0.000) deg R70 : 0.215 deg RSpec : 0.215 deg Total model excess : 3502.8 Excess in RSpec : 2440.5 Model Excess in RSpec : 2414.3 Background in RSpec : 1052.5 Livetime : 41.4 hours Energy threshold : 0.61 TeV Source flux (>1 TeV) : (6.434 +/- 0.211) x 10^-12 cm^-2 s^-1 = (28.47 +/- 0.94) % Crab Fluxes in RSpec (> 1 TeV): Map measurement : 4.552 x 10^-12 cm^-2 s^-1 = 20.14 % Crab Source model : 4.505 x 10^-12 cm^-2 s^-1 = 19.94 % Crab Other component model : 0.000 x 10^-12 cm^-2 s^-1 = 0.00 % Crab Large scale component model : 0.000 x 10^-12 cm^-2 s^-1 = 0.00 % Crab Total model : 4.505 x 10^-12 cm^-2 s^-1 = 19.94 % Crab Containment in RSpec : 70.0 % Contamination in RSpec : 0.0 % Flux correction (RSpec -> Total) : 142.8 % Flux correction (Total -> RSpec) : 70.0 % *** Info from spectral analysis *** Livetime : 13.7 hours Energy range: : 0.38 to 61.90 TeV Background : 1825.9 Excess : 2061.1 Spectral model : ECPL TS ECPL over PL : 10.2 Best-fit model flux(> 1 TeV) : (5.720 +/- 0.417) x 10^-12 cm^-2 s^-1 = (25.31 +/- 1.84) % Crab Best-fit model energy flux(1 to 10 TeV) : (20.779 +/- 1.878) x 10^-12 erg cm^-2 s^-1 Pivot energy : 1.54 TeV Flux at pivot energy : (2.579 +/- 0.083) x 10^-12 cm^-2 s^-1 TeV^-1 = (11.41 +/- 0.24) % Crab PL Flux(> 1 TeV) : (5.437 +/- 0.186) x 10^-12 cm^-2 s^-1 = (24.06 +/- 0.82) % Crab PL Flux(@ 1 TeV) : (6.868 +/- 0.241) x 10^-12 cm^-2 s^-1 TeV^-1 = (30.39 +/- 0.69) % Crab PL Index : 2.26 +/- 0.03 ECPL Flux(@ 1 TeV) : (6.860 +/- 0.252) x 10^-12 cm^-2 s^-1 TeV^-1 = (30.35 +/- 0.72) % Crab ECPL Flux(> 1 TeV) : (5.720 +/- 0.417) x 10^-12 cm^-2 s^-1 = (25.31 +/- 1.84) % Crab ECPL Index : 2.05 +/- 0.06 ECPL Lambda : 0.052 +/- 0.014 TeV^-1 ECPL E_cut : 19.20 +/- 5.01 TeV *** Flux points info *** Number of flux points: 6 Flux points table: e_ref e_min e_max dnde dnde_errn dnde_errp dnde_ul is_ul TeV TeV TeV 1 / (cm2 s TeV) 1 / (cm2 s TeV) 1 / (cm2 s TeV) 1 / (cm2 s TeV) ------ ------ ------ --------------- --------------- --------------- --------------- ----- 0.562 0.383 0.825 2.439e-11 1.419e-12 1.509e-12 2.732e-11 False 1.212 0.825 1.778 4.439e-12 2.489e-13 2.654e-13 4.970e-12 False 2.738 1.778 4.217 7.295e-13 4.788e-14 4.898e-14 8.302e-13 False 6.190 4.217 9.085 1.305e-13 1.220e-14 1.282e-14 1.571e-13 False 13.991 9.085 21.544 1.994e-14 2.723e-15 2.858e-15 2.588e-14 False 31.623 21.544 46.416 9.474e-16 3.480e-16 4.329e-16 1.919e-15 False *** Gaussian component info *** Number of components: 3 Spatial components : HGPSC 023, HGPSC 024, HGPSC 025 Component HGPSC 023: GLON : 320.303 +/- 0.005 deg GLAT : -1.124 +/- 0.007 deg Size : 0.057 +/- 0.005 deg Flux (>1 TeV) : (2.01 +/- 0.23) x 10^-12 cm^-2 s^-1 = (8.9 +/- 1.0) % Crab Component HGPSC 024: GLON : 320.298 +/- 0.020 deg GLAT : -1.168 +/- 0.021 deg Size : 0.206 +/- 0.020 deg Flux (>1 TeV) : (2.54 +/- 0.29) x 10^-12 cm^-2 s^-1 = (11.2 +/- 1.3) % Crab Component HGPSC 025: GLON : 320.351 +/- 0.005 deg GLAT : -1.284 +/- 0.007 deg Size : 0.055 +/- 0.005 deg Flux (>1 TeV) : (1.88 +/- 0.22) x 10^-12 cm^-2 s^-1 = (8.3 +/- 1.0) % Crab *** Source associations info *** Source_Name Association_Catalog Association_Name Separation deg ---------------- ------------------- --------------------- ---------- HESS J1514-591 2FHL 2FHL J1514.0-5915e 0.098903 HESS J1514-591 3FGL 3FGL J1513.9-5908 0.026914 HESS J1514-591 3FGL 3FGL J1514.0-5915e 0.094834 HESS J1514-591 COMP G320.4-1.2 0.070483 HESS J1514-591 PSR B1509-58 0.026891 *** Source identification info *** Source_Name: HESS J1514-591 Identified_Object: MSH 15-52 Class: PWN Evidence: Morphology Reference: 2005A%26A...435L..17A Distance_Reference: SNRCat Distance: 5.199999809265137 kpc Distance_Min: 3.799999952316284 kpc Distance_Max: 6.599999904632568 kpc .. GENERATED FROM PYTHON SOURCE LINES 418-422 You can also call `source.info()` instead and pass as an option what information to print. The options available depend on the catalog, you can learn about them using `help()` .. GENERATED FROM PYTHON SOURCE LINES 422-425 .. code-block:: Python help(source.info) .. rst-class:: sphx-glr-script-out .. code-block:: none Help on method info in module gammapy.catalog.hess: info(info='all') method of gammapy.catalog.hess.SourceCatalogObjectHGPS instance Information string. Parameters ---------- info : {'all', 'basic', 'map', 'spec', 'flux_points', 'components', 'associations', 'id'} Comma separated list of options. .. GENERATED FROM PYTHON SOURCE LINES 426-427 .. code-block:: Python print(source.info("associations")) .. rst-class:: sphx-glr-script-out .. code-block:: none *** Source associations info *** Source_Name Association_Catalog Association_Name Separation deg ---------------- ------------------- --------------------- ---------- HESS J1514-591 2FHL 2FHL J1514.0-5915e 0.098903 HESS J1514-591 3FGL 3FGL J1513.9-5908 0.026914 HESS J1514-591 3FGL 3FGL J1514.0-5915e 0.094834 HESS J1514-591 COMP G320.4-1.2 0.070483 HESS J1514-591 PSR B1509-58 0.026891 .. _sphx_glr_download_tutorials_api_catalog.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/gammapy/gammapy-webpage/v1.3?urlpath=lab/tree/notebooks/1.3/tutorials/api/catalog.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: catalog.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: catalog.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: catalog.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_