.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "tutorials/api/irfs.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_tutorials_api_irfs.py: Using Gammapy IRFs ================== `gammapy.irf` contains classes for handling Instrument Response Functions typically stored as multi-dimensional tables. For a list of IRF classes internally supported, see https://gamma-astro-data-formats.readthedocs.io/en/v0.3/irfs/full_enclosure/index.html This tutorial is intended for advanced users typically creating IRFs. .. GENERATED FROM PYTHON SOURCE LINES 13-34 .. code-block:: Python import numpy as np import astropy.units as u from astropy.coordinates import SkyCoord from astropy.visualization import quantity_support import matplotlib.pyplot as plt from gammapy.irf import ( IRF, Background3D, EffectiveAreaTable2D, EnergyDependentMultiGaussPSF, EnergyDispersion2D, ) from gammapy.irf.io import COMMON_IRF_HEADERS, IRF_DL3_HDU_SPECIFICATION from gammapy.makers.utils import ( make_edisp_kernel_map, make_map_exposure_true_energy, make_psf_map, ) from gammapy.maps import MapAxis, WcsGeom .. GENERATED FROM PYTHON SOURCE LINES 35-38 Inbuilt Gammapy IRFs -------------------- .. GENERATED FROM PYTHON SOURCE LINES 38-47 .. code-block:: Python irf_filename = ( "$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits" ) aeff = EffectiveAreaTable2D.read(irf_filename, hdu="EFFECTIVE AREA") print(aeff) .. rst-class:: sphx-glr-script-out .. code-block:: none EffectiveAreaTable2D -------------------- axes : ['energy_true', 'offset'] shape : (42, 6) ndim : 2 unit : m2 dtype : >f4 .. GENERATED FROM PYTHON SOURCE LINES 48-51 We can see that the Effective Area Table is defined in terms of `energy_true` and `offset` from the camera center .. GENERATED FROM PYTHON SOURCE LINES 51-66 .. code-block:: Python # To see the IRF axes binning, eg, offset print(aeff.axes["offset"]) # To get the IRF data print(aeff.data) # the aeff is evaluated at a given energy and offset print(aeff.evaluate(energy_true=[1, 10] * u.TeV, offset=[0.2, 2.5] * u.deg)) # The peek method gives a quick look into the IRF aeff.peek() .. image-sg:: /tutorials/api/images/sphx_glr_irfs_001.png :alt: irfs :srcset: /tutorials/api/images/sphx_glr_irfs_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none MapAxis name : offset unit : 'deg' nbins : 6 node type : edges edges min : 0.0e+00 deg edges max : 6.0e+00 deg interp : lin [[3.9391360e+02 2.6772235e+02 1.1955810e+01 0.0000000e+00 0.0000000e+00 0.0000000e+00] [2.1976572e+03 1.3710784e+03 6.6018166e+01 0.0000000e+00 0.0000000e+00 0.0000000e+00] [7.2827988e+03 4.4933657e+03 1.9277492e+02 0.0000000e+00 0.0000000e+00 0.0000000e+00] [1.6318811e+04 9.2217412e+03 3.9053906e+02 0.0000000e+00 0.0000000e+00 0.0000000e+00] [2.7097381e+04 1.5188338e+04 7.1269263e+02 0.0000000e+00 0.0000000e+00 0.0000000e+00] [3.5835918e+04 2.0376213e+04 1.4120719e+03 6.4971704e+00 0.0000000e+00 0.0000000e+00] [4.8613613e+04 2.7351418e+04 4.6046689e+03 8.7537086e+01 0.0000000e+00 0.0000000e+00] [6.8954039e+04 4.6218742e+04 1.8455480e+04 7.0139252e+02 0.0000000e+00 0.0000000e+00] [1.0631757e+05 8.4360750e+04 5.2121164e+04 3.4875723e+03 0.0000000e+00 0.0000000e+00] [1.4225631e+05 1.2825456e+05 9.6194453e+04 1.0149044e+04 0.0000000e+00 0.0000000e+00] [1.8893600e+05 1.7755386e+05 1.4428634e+05 2.2362506e+04 6.2068682e+00 0.0000000e+00] [2.3058422e+05 2.1899070e+05 1.8349780e+05 3.8943121e+04 1.1567629e+01 0.0000000e+00] [2.8908866e+05 2.7990194e+05 2.3380311e+05 6.3812160e+04 1.5692809e+02 0.0000000e+00] [3.7190994e+05 3.4834488e+05 2.9489822e+05 9.9163195e+04 8.5162628e+02 5.3302565e+00] [4.1554106e+05 3.9529719e+05 3.3659253e+05 1.4420073e+05 3.4303606e+03 0.0000000e+00] [4.9977859e+05 4.9269494e+05 4.0322775e+05 1.9834338e+05 1.1456479e+04 0.0000000e+00] [5.9969731e+05 5.8570719e+05 4.8037638e+05 2.6652219e+05 2.7997221e+04 3.0902437e+01] [6.7681656e+05 6.6181862e+05 5.3499075e+05 3.2443672e+05 5.7385727e+04 1.8062607e+02] [8.1099306e+05 7.7395744e+05 6.1618850e+05 3.8555500e+05 1.0076540e+05 9.7876233e+02] [9.5867488e+05 8.9280475e+05 7.2040469e+05 4.5892966e+05 1.5842497e+05 4.7765957e+03] [1.2162670e+06 1.1264500e+06 9.0183519e+05 5.3590188e+05 2.2699878e+05 1.5607778e+04] [1.5719922e+06 1.4968236e+06 1.2062580e+06 6.4819444e+05 2.9215375e+05 5.0505949e+04] [2.0122385e+06 1.8475576e+06 1.5297030e+06 7.8799800e+05 3.7284447e+05 1.0520119e+05] [2.4420222e+06 2.3037632e+06 1.9053655e+06 9.5194769e+05 4.5951631e+05 1.8031431e+05] [2.7887840e+06 2.6253652e+06 2.2635108e+06 1.2041222e+06 5.3117988e+05 2.5779092e+05] [3.0016288e+06 2.9912648e+06 2.5768262e+06 1.5230376e+06 5.9205875e+05 3.4480056e+05] [3.3368855e+06 3.1926520e+06 2.8515948e+06 1.8699165e+06 6.9847406e+05 4.2104353e+05] [3.4212028e+06 3.4642048e+06 3.0395135e+06 2.1510240e+06 9.4647544e+05 5.1629219e+05] [3.6419578e+06 3.5427520e+06 3.3886270e+06 2.4904078e+06 1.1061971e+06 5.8834862e+05] [3.8369650e+06 3.7596682e+06 3.4080942e+06 2.6554088e+06 1.3962942e+06 6.9074812e+05] [3.6556248e+06 3.9023670e+06 3.7240965e+06 2.9912712e+06 1.7479085e+06 8.0375512e+05] [4.0462798e+06 4.1072542e+06 3.8377268e+06 3.0739282e+06 1.9910796e+06 9.9608912e+05] [4.7580410e+06 4.2058705e+06 3.5561760e+06 3.2560538e+06 2.3279955e+06 1.1768896e+06] [3.5545130e+06 4.4198250e+06 3.8441040e+06 3.3812120e+06 2.5538942e+06 1.6402822e+06] [4.7350380e+06 4.7123895e+06 4.2164425e+06 3.5192420e+06 2.7652512e+06 1.9816452e+06] [4.8769240e+06 4.7692170e+06 4.2880470e+06 3.5438860e+06 3.0800792e+06 2.2079930e+06] [4.5754970e+06 4.8475650e+06 4.2628525e+06 3.8222980e+06 3.0025508e+06 2.4225498e+06] [4.9606540e+06 4.5763635e+06 4.6471115e+06 3.7471700e+06 3.1438465e+06 2.7804888e+06] [3.6909290e+06 5.0354700e+06 4.0028272e+06 3.3364130e+06 3.3689322e+06 3.1486415e+06] [4.0064830e+06 5.0474750e+06 4.1556008e+06 3.8290458e+06 3.0894640e+06 2.9776920e+06] [4.2465055e+06 4.5345275e+06 4.1062535e+06 3.8885138e+06 3.2021345e+06 3.0907128e+06] [4.6105760e+06 5.3715810e+06 4.0482342e+06 3.6259962e+06 3.3739292e+06 2.9499210e+06]] [ 900269.83242471 3398360.62514628] m2 .. GENERATED FROM PYTHON SOURCE LINES 67-69 Similarly, we can access other IRFs as well .. GENERATED FROM PYTHON SOURCE LINES 69-77 .. code-block:: Python psf = EnergyDependentMultiGaussPSF.read(irf_filename, hdu="Point Spread Function") bkg = Background3D.read(irf_filename, hdu="BACKGROUND") edisp = EnergyDispersion2D.read(irf_filename, hdu="ENERGY DISPERSION") print(bkg) .. rst-class:: sphx-glr-script-out .. code-block:: none Background3D ------------ axes : ['energy', 'fov_lon', 'fov_lat'] shape : (21, 36, 36) ndim : 3 unit : 1 / (MeV s sr) dtype : >f4 .. GENERATED FROM PYTHON SOURCE LINES 78-85 Note that the background is given in FoV coordiantes with `fov_lon` and `fov_lat` axis, and not in `offset` from the camera center. We can also check the Field of view alignment. Currently, two possible alignments are supported: alignment with the horizontal coordinate system (ALTAZ) and alignment with the equatorial coordinate system (RADEC). .. GENERATED FROM PYTHON SOURCE LINES 85-89 .. code-block:: Python print(bkg.fov_alignment) .. rst-class:: sphx-glr-script-out .. code-block:: none FoVAlignment.RADEC .. GENERATED FROM PYTHON SOURCE LINES 90-93 To evaluate the IRFs, pass the values for each axis. To know the default interpolation scheme for the data .. GENERATED FROM PYTHON SOURCE LINES 93-109 .. code-block:: Python print(bkg.interp_kwargs) # Evaluate background # Note that evaluate functions support numpy-style broadcasting energy = [1, 10, 100, 1000] * u.TeV fov_lon = [1, 2] * u.deg fov_lat = [1, 2] * u.deg ev = bkg.evaluate( energy=energy.reshape(-1, 1, 1), fov_lat=fov_lat.reshape(1, -1, 1), fov_lon=fov_lon.reshape(1, 1, -1), ) print(ev) .. rst-class:: sphx-glr-script-out .. code-block:: none {'bounds_error': False, 'fill_value': 0.0, 'values_scale': 'log'} [[[1.27093776e-04 1.12423250e-04] [1.12423250e-04 9.85188496e-05]] [[7.67759236e-07 9.01235137e-07] [9.01235137e-07 1.05901956e-06]] [[5.74465974e-09 5.24685677e-09] [5.24685677e-09 4.65357608e-09]] [[0.00000000e+00 0.00000000e+00] [0.00000000e+00 0.00000000e+00]]] 1 / (MeV s sr) .. GENERATED FROM PYTHON SOURCE LINES 110-113 We can customise the interpolation scheme. Here, we adapt to fill `nan` instead of `0` for extrapolated values .. GENERATED FROM PYTHON SOURCE LINES 113-124 .. code-block:: Python bkg.interp_kwargs["fill_value"] = np.nan ev2 = bkg.evaluate( energy=energy.reshape(-1, 1, 1), fov_lat=fov_lat.reshape(1, -1, 1), fov_lon=fov_lon.reshape(1, 1, -1), ) print(ev2) .. rst-class:: sphx-glr-script-out .. code-block:: none [[[1.27093776e-04 1.12423250e-04] [1.12423250e-04 9.85188496e-05]] [[7.67759236e-07 9.01235137e-07] [9.01235137e-07 1.05901956e-06]] [[5.74465974e-09 5.24685677e-09] [5.24685677e-09 4.65357608e-09]] [[ nan nan] [ nan nan]]] 1 / (MeV s sr) .. GENERATED FROM PYTHON SOURCE LINES 125-128 The interpolation scheme along each axis is taken from the `MapAxis` specification. eg .. GENERATED FROM PYTHON SOURCE LINES 128-145 .. code-block:: Python print( "Interpolation scheme for energy axis is: ", bkg.axes["energy"].interp, "and for the fov_lon axis is: ", bkg.axes["fov_lon"].interp, ) # Evaluate energy dispersion ev = edisp.evaluate(energy_true=1 * u.TeV, offset=[0, 1] * u.deg, migra=[1, 1.2]) print(ev) edisp.peek() print(psf) .. image-sg:: /tutorials/api/images/sphx_glr_irfs_002.png :alt: irfs :srcset: /tutorials/api/images/sphx_glr_irfs_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none Interpolation scheme for energy axis is: log and for the fov_lon axis is: lin [189.80982039 54.28382603] EnergyDependentMultiGaussPSF ---------------------------- axes : ['energy_true', 'offset'] shape : (25, 6) ndim : 2 parameters: ['sigma_1', 'sigma_2', 'sigma_3', 'scale', 'ampl_2', 'ampl_3'] .. GENERATED FROM PYTHON SOURCE LINES 146-151 The PointSpreadFunction for the CTA DC1 is stored as a combination of 3 Gaussians. Other PSFs, like a `PSF_TABLE` and analytic expressions like KING function are also supported. All PSF classes inherit from a common base `PSF` class. .. GENERATED FROM PYTHON SOURCE LINES 151-169 .. code-block:: Python print(psf.axes.names) # To get the containment radius for a fixed fraction at a given position print( psf.containment_radius( fraction=0.68, energy_true=1.0 * u.TeV, offset=[0.2, 4.0] * u.deg ) ) # Alternatively, to get the containment fraction for at a given position print( psf.containment( rad=0.05 * u.deg, energy_true=1.0 * u.TeV, offset=[0.2, 4.0] * u.deg ) ) .. rst-class:: sphx-glr-script-out .. code-block:: none ['energy_true', 'offset'] [0.05075 0.08075] deg [0.66984341 0.35569283] .. GENERATED FROM PYTHON SOURCE LINES 170-173 Support for Asymmetric IRFs --------------------------- .. GENERATED FROM PYTHON SOURCE LINES 176-184 While Gammapy does not have inbuilt classes for supporting asymmetric IRFs (except for `Background3D`), custom classes can be created. For this to work correctly with the `MapDatasetMaker`, only variations with `fov_lon` and `fov_lat` can be allowed. The main idea is that the list of required axes should be correctly mentioned in the class definition. .. GENERATED FROM PYTHON SOURCE LINES 187-190 Effective Area ~~~~~~~~~~~~~~ .. GENERATED FROM PYTHON SOURCE LINES 190-238 .. code-block:: Python class EffectiveArea3D(IRF): tag = "aeff_3d" required_axes = ["energy_true", "fov_lon", "fov_lat"] default_unit = u.m**2 energy_axis = MapAxis.from_energy_edges( [0.1, 0.3, 1.0, 3.0, 10.0] * u.TeV, name="energy_true" ) nbin = 7 fov_lon_axis = MapAxis.from_edges([-1.5, -0.5, 0.5, 1.5] * u.deg, name="fov_lon") fov_lat_axis = MapAxis.from_edges([-1.5, -0.5, 0.5, 1.5] * u.deg, name="fov_lat") data = np.ones((4, 3, 3)) for i in range(1, 4): data[i] = data[i - 1] * 2.0 data[i][-1] = data[i][0] * 1.2 aeff_3d = EffectiveArea3D( [energy_axis, fov_lon_axis, fov_lat_axis], data=data, unit=u.m**2 ) print(aeff_3d) res = aeff_3d.evaluate( fov_lon=[-0.5, 0.8] * u.deg, fov_lat=[-0.5, 1.0] * u.deg, energy_true=[0.2, 8.0] * u.TeV, ) print(res) # to visualise at a given energy # sphinx_gallery_thumbnail_number = 1 aeff_eval = aeff_3d.evaluate(energy_true=[1.0] * u.TeV) ax = plt.subplot() with quantity_support(): caxes = ax.pcolormesh( fov_lat_axis.edges, fov_lon_axis.edges, aeff_eval.value.squeeze() ) fov_lat_axis.format_plot_xaxis(ax) fov_lon_axis.format_plot_yaxis(ax) ax.set_title("Asymmetric effective area") .. image-sg:: /tutorials/api/images/sphx_glr_irfs_003.png :alt: Asymmetric effective area :srcset: /tutorials/api/images/sphx_glr_irfs_003.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none EffectiveArea3D --------------- axes : ['energy_true', 'fov_lon', 'fov_lat'] shape : (4, 3, 3) ndim : 3 unit : m2 dtype : float64 [ 1.12493874 10.80683246] m2 Text(0.5, 1.0, 'Asymmetric effective area') .. GENERATED FROM PYTHON SOURCE LINES 239-241 Unless specified, it is assumed these IRFs are in the RADEC frame .. GENERATED FROM PYTHON SOURCE LINES 241-245 .. code-block:: Python aeff_3d.fov_alignment .. rst-class:: sphx-glr-script-out .. code-block:: none .. GENERATED FROM PYTHON SOURCE LINES 246-252 Serialisation ~~~~~~~~~~~~~ For serialisation, we need to add the class definition to the `IRF_DL3_HDU_SPECIFICATION` dictionary .. GENERATED FROM PYTHON SOURCE LINES 252-270 .. code-block:: Python IRF_DL3_HDU_SPECIFICATION["aeff_3d"] = { "extname": "EFFECTIVE AREA", "column_name": "EFFAREA", "mandatory_keywords": { **COMMON_IRF_HEADERS, "HDUCLAS2": "EFF_AREA", "HDUCLAS3": "FULL-ENCLOSURE", # added here to have HDUCLASN in order "HDUCLAS4": "AEFF_3D", }, } aeff_3d.write("test_aeff3d.fits", overwrite=True) aeff_new = EffectiveArea3D.read("test_aeff3d.fits") print(aeff_new) .. rst-class:: sphx-glr-script-out .. code-block:: none EffectiveArea3D --------------- axes : ['energy_true', 'fov_lon', 'fov_lat'] shape : (4, 3, 3) ndim : 3 unit : m2 dtype : >f8 .. GENERATED FROM PYTHON SOURCE LINES 271-276 Create exposure map ~~~~~~~~~~~~~~~~~~~ DL4 data products can be created from these IRFs. .. GENERATED FROM PYTHON SOURCE LINES 276-291 .. code-block:: Python axis = MapAxis.from_energy_bounds(0.1 * u.TeV, 10 * u.TeV, 6, name="energy_true") pointing = SkyCoord(2, 1, unit="deg") geom = WcsGeom.create(npix=(4, 3), binsz=2, axes=[axis], skydir=pointing) print(geom) exposure_map = make_map_exposure_true_energy( pointing=pointing, livetime="42 h", aeff=aeff_3d, geom=geom ) exposure_map.plot_grid(add_cbar=True, figsize=(17, 7)) plt.show() .. image-sg:: /tutorials/api/images/sphx_glr_irfs_004.png :alt: Energy_true 100 GeV - 215 GeV, Energy_true 215 GeV - 464 GeV, Energy_true 464 GeV - 1.00 TeV, Energy_true 1.00 TeV - 2.15 TeV, Energy_true 2.15 TeV - 4.64 TeV, Energy_true 4.64 TeV - 10.0 TeV :srcset: /tutorials/api/images/sphx_glr_irfs_004.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none WcsGeom axes : ['lon', 'lat', 'energy_true'] shape : (4, 3, 6) ndim : 3 frame : icrs projection : CAR center : 2.0 deg, 1.0 deg width : 8.0 deg x 6.0 deg wcs ref : 2.0 deg, 1.0 deg .. GENERATED FROM PYTHON SOURCE LINES 292-295 Energy Dispersion ----------------- .. GENERATED FROM PYTHON SOURCE LINES 295-303 .. code-block:: Python class EnergyDispersion3D(IRF): tag = "edisp_3d" required_axes = ["energy_true", "migra", "fov_lon", "fov_lat"] default_unit = u.one .. GENERATED FROM PYTHON SOURCE LINES 304-307 Note that most functions defined on the inbuilt IRF classes can be easily generalised to higher dimensions. .. GENERATED FROM PYTHON SOURCE LINES 307-380 .. code-block:: Python # Make a test case energy_axis_true = MapAxis.from_energy_bounds( "0.1 TeV", "100 TeV", nbin=3, name="energy_true" ) migra_axis = MapAxis.from_bounds(0, 4, nbin=2, node_type="edges", name="migra") fov_lon_axis = MapAxis.from_edges([-1.5, -0.5, 0.5, 1.5] * u.deg, name="fov_lon") fov_lat_axis = MapAxis.from_edges([-1.5, -0.5, 0.5, 1.5] * u.deg, name="fov_lat") data = np.array( [ [ [ [5.00e-01, 5.10e-01, 5.20e-01], [6.00e-01, 6.10e-01, 6.30e-01], [6.00e-01, 6.00e-01, 6.00e-01], ], [ [2.0e-02, 2.0e-02, 2.0e-03], [2.0e-02, 2.0e-02, 2.0e-03], [2.0e-02, 2.0e-02, 2.0e-03], ], ], [ [ [5.00e-01, 5.10e-01, 5.20e-01], [6.00e-01, 6.10e-01, 6.30e-01], [6.00e-01, 6.00e-01, 6.00e-01], ], [ [2.0e-02, 2.0e-02, 2.0e-03], [2.0e-02, 2.0e-02, 2.0e-03], [2.0e-02, 2.0e-02, 2.0e-03], ], ], [ [ [5.00e-01, 5.10e-01, 5.20e-01], [6.00e-01, 6.10e-01, 6.30e-01], [6.00e-01, 6.00e-01, 6.00e-01], ], [ [3.0e-02, 6.0e-02, 2.0e-03], [3.0e-02, 5.0e-02, 2.0e-03], [3.0e-02, 4.0e-02, 2.0e-03], ], ], ] ) edisp3d = EnergyDispersion3D( [energy_axis_true, migra_axis, fov_lon_axis, fov_lat_axis], data=data ) print(edisp3d) energy = [1, 2] * u.TeV migra = np.array([0.98, 0.97, 0.7]) fov_lon = [0.1, 1.5] * u.deg fov_lat = [0.0, 0.3] * u.deg edisp_eval = edisp3d.evaluate( energy_true=energy.reshape(-1, 1, 1, 1), migra=migra.reshape(1, -1, 1, 1), fov_lon=fov_lon.reshape(1, 1, -1, 1), fov_lat=fov_lat.reshape(1, 1, 1, -1), ) print(edisp_eval[0]) .. rst-class:: sphx-glr-script-out .. code-block:: none EnergyDispersion3D ------------------ axes : ['energy_true', 'migra', 'fov_lon', 'fov_lat'] shape : (3, 2, 3, 3) ndim : 4 unit : dtype : float64 [[[0.61489 0.620398] [0.60075 0.597774]] [[0.617835 0.623397] [0.603625 0.600661]] [[0.69735 0.70437 ] [0.68125 0.67861 ]]] .. GENERATED FROM PYTHON SOURCE LINES 381-384 Serialisation ~~~~~~~~~~~~~ .. GENERATED FROM PYTHON SOURCE LINES 384-402 .. code-block:: Python IRF_DL3_HDU_SPECIFICATION["edisp_3d"] = { "extname": "ENERGY DISPERSION", "column_name": "MATRIX", "mandatory_keywords": { **COMMON_IRF_HEADERS, "HDUCLAS2": "EDISP", "HDUCLAS3": "FULL-ENCLOSURE", # added here to have HDUCLASN in order "HDUCLAS4": "EDISP_3D", }, } edisp3d.write("test_edisp.fits", overwrite=True) edisp_new = EnergyDispersion3D.read("test_edisp.fits") edisp_new .. raw:: html
EnergyDispersion3D
    ------------------

      axes  : ['energy_true', 'migra', 'fov_lon', 'fov_lat']
      shape : (3, 2, 3, 3)
      ndim  : 4
      unit  : 
      dtype : >f8
    


.. GENERATED FROM PYTHON SOURCE LINES 403-406 Create edisp kernel map ~~~~~~~~~~~~~~~~~~~~~~~ .. GENERATED FROM PYTHON SOURCE LINES 406-421 .. code-block:: Python migra = MapAxis.from_edges(np.linspace(0.5, 1.5, 50), unit="", name="migra") etrue = MapAxis.from_energy_bounds(0.5, 2, 6, unit="TeV", name="energy_true") ereco = MapAxis.from_energy_bounds(0.5, 2, 3, unit="TeV", name="energy") geom = WcsGeom.create(10, binsz=0.5, axes=[ereco, etrue], skydir=pointing) edispmap = make_edisp_kernel_map(edisp3d, pointing, geom) edispmap.peek() plt.show() # print(edispmap.edisp_map.data[3][1][3]) .. image-sg:: /tutorials/api/images/sphx_glr_irfs_005.png :alt: irfs :srcset: /tutorials/api/images/sphx_glr_irfs_005.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none [0. 0. 0.19932878 0.20009124 0.20072608 0.20099855 0.2009851 0.20097159 0. 0. ] .. GENERATED FROM PYTHON SOURCE LINES 422-432 PSF --- There are two types of asymmetric PSFs that can be considered - Asymmetry about the camera center: Such PSF Tables can be supported - Asymmetry about the source position: These PSF models cannot be supported correctly within the data reduction scheme at present Also, analytic PSF models defined within the GADF scheme cannot be directly generalised to the 3D case for use within Gammapy. .. GENERATED FROM PYTHON SOURCE LINES 432-474 .. code-block:: Python class PSF_assym(IRF): tag = "psf_assym" required_axes = ["energy_true", "fov_lon", "fov_lat", "rad"] default_unit = u.sr**-1 energy_axis = MapAxis.from_energy_edges( [0.1, 0.3, 1.0, 3.0, 10.0] * u.TeV, name="energy_true" ) nbin = 7 fov_lon_axis = MapAxis.from_edges([-1.5, -0.5, 0.5, 1.5] * u.deg, name="fov_lon") fov_lat_axis = MapAxis.from_edges([-1.5, -0.5, 0.5, 1.5] * u.deg, name="fov_lat") rad_axis = MapAxis.from_edges([0, 1, 2], unit="deg", name="rad") data = 0.1 * np.ones((4, 3, 3, 2)) for i in range(1, 4): data[i] = data[i - 1] * 1.5 psf_assym = PSF_assym( axes=[energy_axis, fov_lon_axis, fov_lat_axis, rad_axis], data=data, ) print(psf_assym) energy = [1, 2] * u.TeV rad = np.array([0.98, 0.97, 0.7]) * u.deg fov_lon = [0.1, 1.5] * u.deg fov_lat = [0.0, 0.3] * u.deg psf_assym.evaluate( energy_true=energy.reshape(-1, 1, 1, 1), rad=rad.reshape(1, -1, 1, 1), fov_lon=fov_lon.reshape(1, 1, -1, 1), fov_lat=fov_lat.reshape(1, 1, 1, -1), ) .. rst-class:: sphx-glr-script-out .. code-block:: none PSF_assym --------- axes : ['energy_true', 'fov_lon', 'fov_lat', 'rad'] shape : (4, 3, 3, 2) ndim : 4 unit : dtype : float64 .. GENERATED FROM PYTHON SOURCE LINES 475-478 Serialisation ~~~~~~~~~~~~~ .. GENERATED FROM PYTHON SOURCE LINES 478-494 .. code-block:: Python IRF_DL3_HDU_SPECIFICATION["psf_assym"] = { "extname": "POINT SPREAD FUNCTION", "column_name": "MATRIX", "mandatory_keywords": { **COMMON_IRF_HEADERS, "HDUCLAS2": "PSF", "HDUCLAS3": "FULL-ENCLOSURE", "HDUCLAS4": "PSFnD", }, } psf_assym.write("test_psf.fits.gz", overwrite=True) psf_new = PSF_assym.read("test_psf.fits.gz") .. GENERATED FROM PYTHON SOURCE LINES 495-498 Create DL4 product - `PSFMap` ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. GENERATED FROM PYTHON SOURCE LINES 498-509 .. code-block:: Python rad = MapAxis.from_edges(np.linspace(0.5, 3.0, 10), unit="deg", name="rad") etrue = MapAxis.from_energy_bounds(0.5, 2, 6, unit="TeV", name="energy_true") geom = WcsGeom.create(10, binsz=0.5, axes=[rad, etrue], skydir=pointing) psfmap = make_psf_map(psf_assym, pointing, geom) psfmap.peek() plt.show() .. image-sg:: /tutorials/api/images/sphx_glr_irfs_006.png :alt: Exposure, Containment radius at 1 TeV, Containment radius at center of map, PSF at center of map :srcset: /tutorials/api/images/sphx_glr_irfs_006.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 510-515 Containers for asymmetric analytic PSFs are not supported at present. **NOTE**: Support for asymmetric IRFs is preliminary at the moment, and will evolve depending on feedback. .. _sphx_glr_download_tutorials_api_irfs.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/gammapy/gammapy-webpage/v1.3?urlpath=lab/tree/notebooks/1.3/tutorials/api/irfs.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: irfs.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: irfs.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: irfs.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_