.. include:: ../../references.txt .. _fov_background: ************** FoV background ************** Overview -------- Background models stored in IRF might not predict accurately the actual number of background counts. To correct the predicted counts, one can use the data themselves in regions deprived of gamma-ray signal. The field-of-view background technique is used to adjust the predicted counts on the measured ones outside an exclusion mask. This technique is recommended for 3D analysis, in particular when stacking `~gammapy.datasets.Datasets`. Gammapy provides the `~gammapy.makers.FoVBackgroundMaker`. The latter creates a `~gammapy.modeling.models.FoVBackgroundModel` which combines the `background` predicted number of counts and a `~gammapy.modeling.models.NormSpectralModel` which allows to renormalize the background cube, and possibly to change its spectral distribution. By default, only the `norm` parameter of a `~gammapy.modeling.models.PowerLawNormSpectralModel` is left free. Here we show the addition of a `~gammapy.modeling.models.PowerLawNormSpectralModel` in which the `norm` and `tilt` parameters are unfrozen as an example. .. testcode:: from gammapy.makers import MapDatasetMaker, FoVBackgroundMaker, SafeMaskMaker from gammapy.datasets import MapDataset from gammapy.data import DataStore from gammapy.modeling.models import PowerLawNormSpectralModel from gammapy.maps import MapAxis, WcsGeom, Map from regions import CircleSkyRegion from astropy import units as u data_store = DataStore.from_dir("$GAMMAPY_DATA/hess-dl3-dr1") observations = data_store.get_observations([23592, 23559]) energy_axis = MapAxis.from_energy_bounds("0.5 TeV", "10 TeV", nbin=5) energy_axis_true = MapAxis.from_energy_bounds("0.3 TeV", "20 TeV", nbin=20, name="energy_true") geom = WcsGeom.create(skydir=(83.63, 22.01), axes=[energy_axis], width=5, binsz=0.02) stacked = MapDataset.create(geom, energy_axis_true=energy_axis_true) maker = MapDatasetMaker() safe_mask_maker = SafeMaskMaker( methods=["aeff-default", "offset-max"], offset_max="2.5 deg" ) circle = CircleSkyRegion(center=geom.center_skydir, radius=0.2 * u.deg) exclusion_mask = geom.region_mask([circle], inside=False) spectral_model = PowerLawNormSpectralModel() spectral_model.norm.frozen = False spectral_model.tilt.frozen = False fov_bkg_maker = FoVBackgroundMaker( method="fit", exclusion_mask=exclusion_mask, spectral_model=spectral_model ) for obs in observations: dataset = maker.run(stacked, obs) dataset = safe_mask_maker.run(dataset, obs) dataset = fov_bkg_maker.run(dataset) stacked.stack(dataset) It is also possible to implement other normed models, such as the `~gammapy.modeling.models.PiecewiseNormSpectralModel`. To do so, you can utilise most of the above code with an adaption to the `spectral_model` applied in the `fov_bkg_maker`. .. code-block:: python from gammapy.modeling.models import PiecewiseNormSpectralModel spectral_model = PiecewiseNormSpectralModel( energy=energy_axis.edges, norms=np.ones_like(energy_axis.edges) ) fov_bkg_maker = FoVBackgroundMaker( method="fit", exclusion_mask=exclusion_mask, spectral_model=spectral_model ) Note: to prevent poorly constrained `norm` parameters or large variance in the last bins, the binning should be adjusted to have wider bins at higher energies. This ensures there are enough statistics per bin, enabling the fit to converge. .. minigallery:: gammapy.makers.FoVBackgroundMaker :add-heading: