# Licensed under a 3-clause BSD style license - see LICENSE.rst
import numpy as np
from gammapy.modeling import Fit, Parameter, Covariance, FitResult, OptimizeResult
from gammapy.stats.utils import sigma_to_ts
__all__ = ["select_nested_models", "NestedModelSelection"]
class NestedModelSelection:
"""Compute the test statistic (TS) between two nested hypothesis.
The null hypothesis is the minimal one, for which a set of parameters
are frozen to given values. The model is updated to the alternative hypothesis
if there is a significant improvement (larger than the given threshold).
Parameters
----------
parameters : `~gammapy.modeling.Parameters` or list of `~gammapy.modeling.Parameter`
List of parameters frozen for the null hypothesis but free for the test hypothesis.
null_values : list of float or `~gammapy.modeling.Parameters`
Values of the parameters frozen for the null hypothesis.
If a `Parameters` object or a list of `Parameters` is given
the null hypothesis follows the values of these parameters,
so this tests linked parameters versus unliked.
n_sigma : float
Threshold in number of sigma to switch from the null hypothesis
to the alternative one. Default is 2.
The TS is converted to sigma assuming that the Wilks' theorem is verified.
n_free_parameters : int
Number of free parameters to consider between the two hypothesis
in order to estimate the `ts_threshold` from the `n_sigma` threshold.
Default is len(parameters).
fit : `Fit`
Fit instance specifying the backend and fit options.
"""
def __init__(
self, parameters, null_values, n_sigma=2, n_free_parameters=None, fit=None
):
self.parameters = parameters
self.null_values = null_values
self.n_sigma = n_sigma
if n_free_parameters is None:
n_free_parameters = len(parameters)
self.n_free_parameters = n_free_parameters
if fit is None:
fit = Fit()
minuit_opts = {"tol": 0.1, "strategy": 1}
fit.backend = "minuit"
fit.optimize_opts = minuit_opts
self.fit = fit
@property
def ts_threshold(self):
"""Threshold value in TS corresponding to `n_sigma`.
This assumes that the TS follows a chi squared distribution
with a number of degree of freedom equal to `n_free_parameters`.
"""
return np.sign(self.n_sigma) * sigma_to_ts(self.n_sigma, self.n_free_parameters)
def ts_known_bkg(self, datasets):
"""Perform the alternative hypothesis testing assuming known background (all parameters frozen).
This implicitly assumes that the alternative model is a good representation of the true model.
If the assumption is true, the ``ts_known_bkg`` should tend to the ``ts_asimov`` (deviation would
indicate a bad fit of the data).
Deviations between ``ts`` and ``frozen_ts`` can be used to identify potential sources of confusion
depending on which parameters are let free for the ``ts`` computation
(for example considering diffuse background or nearby source).
"""
stat = datasets.stat_sum()
cache = self._apply_null_hypothesis(datasets)
stat_null = datasets.stat_sum()
self._restore_status(datasets, cache)
return stat_null - stat
def ts_asimov(self, datasets):
"""Perform the alternative hypothesis testing in the Asimov dataset.
The Asimov dataset is defined by counts=npred such as the non-null model is the true model.
"""
asimov_datasets = datasets._to_asimov_datasets()
return self.ts_known_bkg(asimov_datasets)
def ts(self, datasets):
"""Perform the alternative hypothesis testing."""
return self.run(datasets, apply_selection=False)["ts"]
def run(self, datasets, apply_selection=True):
"""Perform the alternative hypothesis testing and apply model selection.
Parameters
----------
datasets : `~gammapy.datasets.Datasets`
Datasets.
apply_selection : bool, optional
Apply or not the model selection. Default is True.
Returns
-------
result : dict
Dictionary with the TS of the best fit value compared to the null hypothesis
and fit results for the two hypotheses. Entries are:
* "ts" : fit statistic difference with null hypothesis
* "fit_results" : results for the best fit
* "fit_results_null" : fit results for the null hypothesis
"""
for p in self.parameters:
p.frozen = False
fit_results = self.fit.run(datasets)
stat = datasets.stat_sum()
cache = self._apply_null_hypothesis(datasets)
if len(datasets.models.parameters.free_parameters) > 0:
fit_results_null = self.fit.run(datasets)
else:
fit_results_null = FitResult(
OptimizeResult(
models=datasets.models.copy(),
nfev=0,
total_stat=datasets.stat_sum(),
trace=None,
backend=None,
method=None,
success=None,
message=None,
)
)
stat_null = datasets.stat_sum()
ts = stat_null - stat
if not apply_selection or ts > self.ts_threshold:
# restore default model if preferred against null hypothesis or if selection is ignored
self._restore_status(datasets, cache)
return dict(
ts=ts,
fit_results=fit_results,
fit_results_null=fit_results_null,
)
def _apply_null_hypothesis(self, datasets):
cache = dict()
cache["object"] = [p.__dict__ for p in datasets.models.parameters]
cache["values"] = [p.value for p in datasets.models.parameters]
cache["error"] = [p.error for p in datasets.models.parameters]
for p, val in zip(self.parameters, self.null_values):
if isinstance(val, Parameter):
p.__dict__ = val.__dict__
else:
p.value = val
p.frozen = True
cache["covar"] = Covariance(
datasets.models.parameters, datasets.models.covariance.data
)
return cache
def _restore_status(self, datasets, cache):
"""Restore parameters to given cached objects and values."""
for p in self.parameters:
p.frozen = False
for kp, p in enumerate(datasets.models.parameters):
p.__dict__ = cache["object"][kp]
p.value = cache["values"][kp]
p.error = cache["error"][kp]
datasets._covariance = cache["covar"]
[docs]
def select_nested_models(
datasets, parameters, null_values, n_sigma=2, n_free_parameters=None, fit=None
):
"""Compute the test statistic (TS) between two nested hypotheses.
This function evaluates whether adding one or more parameters (alternative hypothesis)
provides a statistically significant improvement (larger than the given threshold)
over a simpler model (null hypothesis), where those parameters are fixed to given values.
The model is updated to the alternative hypothesis if there is a significant
improvement (larger than the given threshold, ``n_sigma``).
Parameters
----------
datasets : `~gammapy.datasets.Datasets`
Datasets.
parameters : `~gammapy.modeling.Parameters` or list of `~gammapy.modeling.Parameter`
List of parameters frozen for the null hypothesis but free for the test hypothesis.
null_values : list of float or `~gammapy.modeling.Parameters`
Values of the parameters frozen under the null hypothesis.
If a `Parameters` object or a list of `Parameters` is provided,
the null hypothesis assumes these values.
This allows testing of linked versus unlinked parameters.
n_sigma : float, optional
Threshold in number of sigma for rejecting the null hypothesis in favour of
the alternative. Default is 2.
The TS is converted to sigma assuming that the Wilks' theorem is verified.
n_free_parameters : int, optional
Number of free parameters to consider between the two hypotheses
when estimating the `ts_threshold` from the ``n_sigma`` threshold.
Default is ``len(parameters)``.
fit : `Fit`, optional
Fit instance specifying the backend and fit options. Default is None, which utilises
the "minuit" backend with tol=0.1 and strategy=1.
Returns
-------
result : dict
Dictionary with the TS of the best fit value compared to the null hypothesis
and fit results for the two hypotheses. Entries are:
* "ts" : fit statistic difference with null hypothesis
* "fit_results" : results for the best fit
* "fit_results_null" : fit results for the null hypothesis
Notes
-----
This is useful for testing the significance of adding model components, such as
a spectral cutoff or a source detection. It assumes the two models are *nested* —
the null hypothesis is a special case of the alternative with fixed parameters.
See below for two simple examples and :ref:`compute_upper_lims` for a more in-depth example.
Examples
--------
.. testcode::
from gammapy.modeling.selection import select_nested_models
from gammapy.datasets import Datasets, SpectrumDatasetOnOff
from gammapy.modeling.models import SkyModel
# Test if cutoff is significant
dataset = SpectrumDatasetOnOff.read("$GAMMAPY_DATA/joint-crab/spectra/hess/pha_obs23523.fits")
datasets = Datasets(dataset)
model = SkyModel.create(spectral_model="ecpl", spatial_model="point", name='hess')
datasets.models = model
# If there is no cutoff (null hypothesis) then the spectral cutoff (`lambda`) is zero
result = select_nested_models(datasets,
parameters=[model.spectral_model.lambda_],
null_values=[0],
)
# Test if source is significant
filename = "$GAMMAPY_DATA/fermi-3fhl-crab/Fermi-LAT-3FHL_datasets.yaml"
filename_models = "$GAMMAPY_DATA/fermi-3fhl-crab/Fermi-LAT-3FHL_models.yaml"
fermi_datasets = Datasets.read(filename=filename, filename_models=filename_models)
model = fermi_datasets.models["Crab Nebula"]
# Number of parameters previously fit for the source of interest
n_free_parameters = len(model.parameters.free_parameters)
# Freeze spatial parameters to ensure another weaker source does not move from its position
# to replace the source of interest during the null hypothesis test.
# (with all parameters free you test N vs. N+1 models and not the detection of a specific source.)
fermi_datasets.models.freeze(model_type='spatial')
# Null hypothesis value for the amplitude should be 0, i.e. the flux of the source is 0
results = select_nested_models(fermi_datasets,
parameters=[model.spectral_model.amplitude],
null_values=[0],
n_free_parameters=n_free_parameters,
n_sigma=4,
)
"""
test = NestedModelSelection(
parameters, null_values, n_sigma, n_free_parameters, fit
)
return test.run(datasets)