PriorParameter#
- class gammapy.modeling.PriorParameter[source]#
Bases:
ParameterParameter of a
Prior.A prior is a probability density function of a model parameter and can take different forms, including but not limited to Gaussian distributions and uniform distributions. The prior includes information or knowledge about the dataset or the parameters of the fit.
Examples
For a usage example see Priors tutorial.
Attributes Summary
Confidence maximum value as a
float.Confidence minimum value as a
float.Factor as a float.
Factor maximum as a float (used by the optimizer).
Factor minimum as a float (used by the optimizer).
Frozen (used in fitting) (bool).
Maximum as a float.
Minimum as a float.
Name as a string.
Prior applied to the parameter as a
Prior.Value times unit as a
Quantity.Scale as a float.
Method used to set
factorandscale.Scale interp : {"lin", "sqrt", "log"}.
Stat scan maximum.
Stat scan minimum.
Stat scan n sigma.
Stat scan values as a
numpy.ndarray.Unit as a
Unitobject.Value = factor x scale (float).
Methods Summary
Apply
interpolation_scaleandscale_methodto the parameter.Emit a warning or error if value is outside the minimum/maximum range.
copy()Deep copy.
inverse_transform(factor)Inverse transform from factor (used by the optimizer) to value.
Reset scaling such as factor=value, scale=1.
set_lim([min, max])Set the min and/or max value for the parameter.
to_dict()Convert to dictionary.
transform(value[, update_scale])Transform from value to factor (used by the optimizer).
update_from_dict(data)Update parameters from a dictionary.
update_scale(value)Update the parameter scale.
Attributes Documentation
- conf_max#
Confidence maximum value as a
float.Return parameter maximum if defined, otherwise a default is estimated from value and error.
- conf_min#
Confidence minimum value as a
float.Return parameter minimum if defined, otherwise a default is estimated from value and error.
- error#
- factor#
Factor as a float.
- factor_max#
Factor maximum as a float (used by the optimizer).
By default, when no transform is applied,
factor_max = max / scale, otherwisefactor_max = transform(max).
- factor_min#
Factor minimum as a float (used by the optimizer).
By default, when no transform is applied,
factor_min = min / scale, otherwisefactor_min = transform(min).
- frozen#
Frozen (used in fitting) (bool).
- max#
Maximum as a float.
- min#
Minimum as a float.
- name#
Name as a string.
- scale#
Scale as a float.
- scale_method#
Method used to set
factorandscale.
- scale_transform#
Scale interp : {“lin”, “sqrt”, “log”}.
- scan_max#
Stat scan maximum.
- scan_min#
Stat scan minimum.
- scan_n_sigma#
Stat scan n sigma.
- scan_values#
Stat scan values as a
numpy.ndarray.
- type#
- value#
Value = factor x scale (float).
Methods Documentation
- autoscale()#
Apply
interpolation_scaleandscale_methodto the parameter.
- check_limits()#
Emit a warning or error if value is outside the minimum/maximum range.
- copy()#
Deep copy.
- inverse_transform(factor)#
Inverse transform from factor (used by the optimizer) to value.
- Parameters:
- factorfloat
Parameter factor.
- prior_stat_sum()#
- reset_autoscale()#
Reset scaling such as factor=value, scale=1.
- set_lim(min=None, max=None)#
Set the min and/or max value for the parameter.
- transform(value, update_scale=False)#
Transform from value to factor (used by the optimizer).
- Parameters:
- valuefloat
Parameter value.
- update_scalebool, optional
Update the scaling (used by the autoscale). Default is False.
- update_from_dict(data)#
Update parameters from a dictionary.
- update_scale(value)#
Update the parameter scale.
Set
factorandscaleaccording toscale_methodattribute.Available
scale_method.scale10setsscaleto power of 10, so that abs(factor) is in the range 1 to 10factor1setsfactor, scale = 1, value
In both cases the sign of value is stored in
factor, i.e. thescaleis always positive. Ifscale_methodis None the scaling is ignored.
- __init__(name, value, unit='', scale=1, min=nan, max=nan, error=0, scale_method='scale10', scale_transform='lin')[source]#
- classmethod __new__(*args, **kwargs)#