.. _sphx_glr_tutorials_api:

Package / API
=============

The following tutorials demonstrate different dimensions of the Gammapy API or
expose how to perform more specific use cases.



.. raw:: html

    <div class="sphx-glr-thumbnails">

.. thumbnail-parent-div-open

.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="gammapy.irf contains classes for handling Instrument Response Functions typically stored as multi-dimensional tables. Gammapy is currently supporting the functions defined in the GADF format (see https://gamma-astro-data-formats.readthedocs.io/en/v0.3/irfs/full_enclosure/index.html). The detailed list can be found in the IRF user guide &lt;/user-guide/irf/index&gt;.">

.. only:: html

  .. image:: /tutorials/api/images/thumb/sphx_glr_irfs_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_api_irfs.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Using Gammapy IRFs</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="This tutorial explains how to make such a plot, that is the distribution of event counts as a function of the squared angular distance, to a test position.">

.. only:: html

  .. image:: /tutorials/api/images/thumb/sphx_glr_theta_square_plot_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_api_theta_square_plot.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Make a theta-square plot</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Clustering observations into specific groups.">

.. only:: html

  .. image:: /tutorials/api/images/thumb/sphx_glr_observation_clustering_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_api_observation_clustering.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Observational clustering</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="A thorough tutorial to work with WCS maps.">

.. only:: html

  .. image:: /tutorials/api/images/thumb/sphx_glr_maps_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_api_maps.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Maps</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Create and apply masks maps.">

.. only:: html

  .. image:: /tutorials/api/images/thumb/sphx_glr_mask_maps_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_api_mask_maps.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Mask maps</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Data reduction: from observations to binned datasets">

.. only:: html

  .. image:: /tutorials/api/images/thumb/sphx_glr_makers_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_api_makers.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Makers - Data reduction</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Learn how to work with datasets">

.. only:: html

  .. image:: /tutorials/api/images/thumb/sphx_glr_datasets_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_api_datasets.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Datasets - Reduced data, IRFs, models</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="The sub-package modeling contains all the functionality related to modeling and fitting data. This includes spectral, spatial and temporal model classes, as well as the fit and parameter API.The models follow a naming scheme which contains the category as a suffix to the class name. An overview of all the available models can be found in the model-gallery.">

.. only:: html

  .. image:: /tutorials/api/images/thumb/sphx_glr_models_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_api_models.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Models</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Multiple datasets and models interaction in Gammapy.">

.. only:: html

  .. image:: /tutorials/api/images/thumb/sphx_glr_model_management_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_api_model_management.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Modelling</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Learn how you can include prior knowledge into the fitting by setting priors on single parameters.">

.. only:: html

  .. image:: /tutorials/api/images/thumb/sphx_glr_priors_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_api_priors.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Priors</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Learn how the model, dataset and fit Gammapy classes work together in a detailed modeling and fitting use-case.">

.. only:: html

  .. image:: /tutorials/api/images/thumb/sphx_glr_fitting_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_api_fitting.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Fitting</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="This tutorial provides an overview of the Estimator API. All estimators live in the gammapy.estimators sub-module, offering a range of algorithms and classes for high-level flux and significance estimation. This is accomplished through a common functionality allowing the estimation of flux points, light curves, flux maps and profiles via a common API.">

.. only:: html

  .. image:: /tutorials/api/images/thumb/sphx_glr_estimators_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_api_estimators.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Estimators</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Access and explore thew most common gamma-ray source catalogs.">

.. only:: html

  .. image:: /tutorials/api/images/thumb/sphx_glr_catalog_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_api_catalog.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Source catalogs</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Convenience methods for dark matter high level analyses.">

.. only:: html

  .. image:: /tutorials/api/images/thumb/sphx_glr_astro_dark_matter_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_api_astro_dark_matter.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Dark matter spatial and spectral models</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="A demonstration of a Bayesian analysis using the nested sampling technique.">

.. only:: html

  .. image:: /tutorials/api/images/thumb/sphx_glr_nested_sampling_Crab_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_api_nested_sampling_Crab.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Bayesian analysis with nested sampling</div>
    </div>


.. thumbnail-parent-div-close

.. raw:: html

    </div>


.. toctree::
   :hidden:

   /tutorials/api/irfs
   /tutorials/api/theta_square_plot
   /tutorials/api/observation_clustering
   /tutorials/api/maps
   /tutorials/api/mask_maps
   /tutorials/api/makers
   /tutorials/api/datasets
   /tutorials/api/models
   /tutorials/api/model_management
   /tutorials/api/priors
   /tutorials/api/fitting
   /tutorials/api/estimators
   /tutorials/api/catalog
   /tutorials/api/astro_dark_matter
   /tutorials/api/nested_sampling_Crab