.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "tutorials/api/nested_sampling_Crab.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end <sphx_glr_download_tutorials_api_nested_sampling_Crab.py>` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_tutorials_api_nested_sampling_Crab.py: Bayesian analysis with nested sampling ====================================== A demonstration of a Bayesian analysis using the nested sampling technique. .. GENERATED FROM PYTHON SOURCE LINES 11-85 Context ------- 1. Bayesian analysis ~~~~~~~~~~~~~~~~~~~~ Bayesian inference uses prior knowledge, in the form of a prior distribution, in order to estimate posterior probabilities which we traditionally visualise in the form of corner plots. These distributions contain more information than a maximum likelihood fit as they reveal not only the “best model” but provide a more accurate representation of errors and correlation between parameters. In particular, non-Gaussian degeneracies are complex to estimate with a maximum likelihood approach. 2. Limitations of the Markov Chain Monte Carlo approach ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A well-known approach to estimate this posterior distribution is the Markov Chain Monte Carlo (MCMC). This uses an ensemble of walkers to produce a chain of samples that after a convergence period will reach a stationary state. *Once convergence* is reached, the successive elements of the chain are samples of the target posterior distribution. However, the weakness of the MCMC approach lies in the "*Once convergence*" part. If the walkers are started far from the best likelihood region, the convergence time can be long or never reached if the walkers fall in a local minima. The choice of the initialisation point can become critical for complex models with a high number of dimensions and the ability of these walkers to escape a local minimum or to accurately describe a complex likelihood space is not guaranteed. 3. Nested sampling approach ~~~~~~~~~~~~~~~~~~~~~~~~~~~ To overcome these issues, the nested sampling (NS) algorithm has gained traction in physics and astronomy. It is a Monte Carlo algorithm for computing an integral of the likelihood function over the prior model parameter space introduced in `Skilling, 2004 <https://ui.adsabs.harvard.edu/abs/2004AIPC..735..395S>`__. The method performs this integral by evolving a collection of points through the parameter space (see recent reviews from `Ashton et al., 2022 <https://ui.adsabs.harvard.edu/abs/2022NRvMP...2...39A>`__, and `Buchner, 2023 <http://arxiv.org/abs/2101.09675>`__). Without going into too many details, one important specificity of the NS method is that it starts from the entire parameter space and evolves a collection of live points to map all minima (including multiple modes if any), whereas Markov Chain Monte Carlo methods require an initialisation point and the walkers will explore the local likelihood. The ability of these walkers to escape a local minimum or to accurately describe a complex likelihood space is not guaranteed. This is a fundamental difference with MCMC or Minuit which will only ever probe the vicinity along their minimisation paths and do not have an overview of the global likelihood landscape. The analysis using the NS framework is more CPU time consuming than a standard classical fit, but it provides the full posterior distribution for all parameters, which is out of reach with traditional fitting techniques (N*(N-1)/2 contour plots to generate). In addition, it is more robust to the choice of initialisation, requires less human intervention and is therefore readily integrated in pipeline analysis. In Gammapy, we used the NS implementation of the UltraNest package (see `here <https://johannesbuchner.github.io/UltraNest/>`__ for more information), one of the leading package in Astronomy (already used in Cosmology and in X-rays). For a nice visualisation of the NS method see here : `sampling visualisation <https://johannesbuchner.github.io/UltraNest/method.html#visualisation>`__. And for a tutorial of UltraNest applied to X-ray fitting with concrete examples and questions see : `BXA Tutorial <https://peterboorman.com/tutorial_bxa.html>`__. **Note: please cite UltraNest if used for a paper** If you are using the "UltraNest" library for a paper, please follow its citation scheme: `Cite UltraNest <https://johannesbuchner.github.io/UltraNest/issues.html#how-should-i-cite-ultranest>`__. .. GENERATED FROM PYTHON SOURCE LINES 87-94 Proposed approach ----------------- In this example, we will perform a Bayesian analysis with multiple 1D spectra of the Crab nebula data and investigate their posterior distributions. .. GENERATED FROM PYTHON SOURCE LINES 97-102 Setup ----- As usual, we’ll start with some setup … .. GENERATED FROM PYTHON SOURCE LINES 102-117 .. code-block:: Python import matplotlib.pyplot as plt import numpy as np from gammapy.datasets import Datasets from gammapy.datasets import SpectrumDatasetOnOff from gammapy.modeling.models import ( SkyModel, UniformPrior, LogUniformPrior, ) from gammapy.modeling.sampler import Sampler .. GENERATED FROM PYTHON SOURCE LINES 118-124 Loading the spectral datasets ----------------------------- Here we will load a few Crab 1D spectral data for which we will do a fit. .. GENERATED FROM PYTHON SOURCE LINES 124-133 .. code-block:: Python path = "$GAMMAPY_DATA/joint-crab/spectra/hess/" datasets = Datasets() for id in ["23526", "23559", "23592"]: dataset = SpectrumDatasetOnOff.read(f"{path}pha_obs{id}.fits") datasets.append(dataset) .. GENERATED FROM PYTHON SOURCE LINES 134-142 Model definition ---------------- Now we want to define the spectral model that will be fitted to the data. The Crab spectra will be fitted here with a simple powerlaw for simplicity. .. GENERATED FROM PYTHON SOURCE LINES 142-146 .. code-block:: Python model = SkyModel.create(spectral_model="pl", name="crab") .. GENERATED FROM PYTHON SOURCE LINES 147-161 .. WARNING:: Priors definition: Unlike a traditional fit where priors on the parameters are optional, here it is inherent to the Bayesian approach and are therefore mandatory. In this case we will set (min,max) prior that will define the boundaries in which the sampling will be performed. Note that it is usually recommended to use a `~gammapy.modeling.models.LogUniformPrior` for the parameters that have a large amplitude range like the `amplitude` parameter. A `~gammapy.modeling.models.UniformPrior` means that the samples will be drawn with uniform probability between the (min,max) values in the linear or log space in the case of a `~gammapy.modeling.models.LogUniformPrior`. .. GENERATED FROM PYTHON SOURCE LINES 162-169 .. code-block:: Python model.spectral_model.amplitude.prior = LogUniformPrior(min=1e-12, max=1e-10) model.spectral_model.index.prior = UniformPrior(min=1, max=5) datasets.models = [model] print(datasets.models) .. rst-class:: sphx-glr-script-out .. code-block:: none DatasetModels Component 0: SkyModel Name : crab Datasets names : None Spectral model type : PowerLawSpectralModel Spatial model type : Temporal model type : Parameters: index : 2.000 +/- 0.00 amplitude : 1.00e-12 +/- 0.0e+00 1 / (TeV s cm2) reference (frozen): 1.000 TeV .. GENERATED FROM PYTHON SOURCE LINES 170-200 Defining the sampler and options -------------------------------- As for the `~gammapy.modeling.Fit` object, the `~gammapy.modeling.Sampler` object can receive different backend (although just one is available for now). The `~gammapy.modeling.Sampler` comes with “reasonable” default parameters, but you can change them via the `sampler_opts` dictionnary. Here is a short description of the most relevant parameters that you could change : - `live_points`: minimum number of live points throughout the run. More points allow to discover multiple peaks if existing, but is slower. To test the Prior boundaries and for debugging, a lower number (~100) can be used before a production run with more points (~400 or more). - `frac_remain`: the cut-off condition for the integration, set by the maximum allowed fraction of posterior mass left in the live points vs the dead points. High values (e.g., 0.5) are faster and can be used if the posterior distribution is a relatively simple shape. A low value (1e-1, 1e-2) is optimal for finding peaks, but slower. - `log_dir`: directory where the output files will be stored. If set to None, no files will be written. If set to a string, a directory will be created containing the ongoing status of the run and final results. For time consuming analysis, it is highly recommended to use that option to monitor the run and restart it in case of a crash (with `resume=True`). **Important note:** unlike the MCMC method, you don’t need to define the number of steps for which the sampler will run. The algorithm will automatically stop once a convergence criteria has been reached. .. GENERATED FROM PYTHON SOURCE LINES 200-210 .. code-block:: Python sampler_opts = { "live_points": 300, "frac_remain": 0.3, "log_dir": None, } sampler = Sampler(backend="ultranest", sampler_opts=sampler_opts) .. GENERATED FROM PYTHON SOURCE LINES 211-214 Next we can run the sampler on a given dataset. No options are accepted in the run method. .. GENERATED FROM PYTHON SOURCE LINES 214-218 .. code-block:: Python result_joint = sampler.run(datasets) .. rst-class:: sphx-glr-script-out .. code-block:: none [ultranest] Sampling 300 live points from prior ... Mono-modal Volume: ~exp(-3.98) * Expected Volume: exp(0.00) Quality: ok index : +1.0|************************************************| +5.0 amplitude: +1.0e-12|********************** ****** ***** ***********| +1.0e-10 Z=-inf(0.00%) | Like=-4842.51..-64.69 [-4842.5105..-355.2563] | it/evals=0/301 eff=0.0000% N=300 Z=-589.1(0.00%) | Like=-553.66..-64.69 [-4842.5105..-355.2563] | it/evals=21/322 eff=95.4545% N=300 Z=-552.2(0.00%) | Like=-545.22..-60.14 [-4842.5105..-355.2563] | it/evals=30/332 eff=93.7500% N=300 Z=-529.8(0.00%) | Like=-524.52..-60.14 [-4842.5105..-355.2563] | it/evals=49/354 eff=90.7407% N=300 Z=-512.7(0.00%) | Like=-506.60..-60.14 [-4842.5105..-355.2563] | it/evals=60/366 eff=90.9091% N=300 Mono-modal Volume: ~exp(-4.07) * Expected Volume: exp(-0.22) Quality: ok index : +1.0|************************************************| +5.0 amplitude: +1.0e-12|********************** ****** ***** ****** ***| +1.0e-10 Z=-503.4(0.00%) | Like=-498.00..-60.14 [-4842.5105..-355.2563] | it/evals=67/376 eff=88.1579% N=300 Z=-473.7(0.00%) | Like=-466.19..-59.69 [-4842.5105..-355.2563] | it/evals=88/398 eff=89.7959% N=300 Z=-469.8(0.00%) | Like=-463.29..-59.69 [-4842.5105..-355.2563] | it/evals=90/400 eff=90.0000% N=300 Z=-452.6(0.00%) | Like=-446.85..-59.69 [-4842.5105..-355.2563] | it/evals=109/424 eff=87.9032% N=300 Z=-440.7(0.00%) | Like=-435.30..-59.69 [-4842.5105..-355.2563] | it/evals=120/436 eff=88.2353% N=300 Mono-modal Volume: ~exp(-4.20) * Expected Volume: exp(-0.45) Quality: ok index : +1.0|************************************************| +5.0 amplitude: +1.0e-12|************************************ ******* * *| +1.0e-10 Z=-431.3(0.00%) | Like=-423.86..-59.69 [-4842.5105..-355.2563] | it/evals=134/455 eff=86.4516% N=300 Z=-418.8(0.00%) | Like=-410.69..-59.69 [-4842.5105..-355.2563] | it/evals=150/472 eff=87.2093% N=300 Z=-401.0(0.00%) | Like=-393.78..-59.69 [-4842.5105..-355.2563] | it/evals=167/496 eff=85.2041% N=300 Z=-390.5(0.00%) | Like=-383.62..-59.69 [-4842.5105..-355.2563] | it/evals=180/512 eff=84.9057% N=300 Z=-369.6(0.00%) | Like=-361.14..-59.69 [-4842.5105..-355.2563] | it/evals=198/534 eff=84.6154% N=300 Mono-modal Volume: ~exp(-4.26) * Expected Volume: exp(-0.67) Quality: ok index : +1.0| **********************************************| +5.0 amplitude: +1.0e-12| ********************************************* *| +1.0e-10 Z=-365.7(0.00%) | Like=-358.08..-59.69 [-4842.5105..-355.2563] | it/evals=201/539 eff=84.1004% N=300 Z=-350.8(0.00%) | Like=-342.05..-59.69 [-354.1947..-200.5357] | it/evals=210/551 eff=83.6653% N=300 Z=-337.0(0.00%) | Like=-331.57..-59.69 [-354.1947..-200.5357] | it/evals=227/574 eff=82.8467% N=300 Z=-327.2(0.00%) | Like=-320.66..-59.69 [-354.1947..-200.5357] | it/evals=240/590 eff=82.7586% N=300 Z=-312.0(0.00%) | Like=-304.71..-59.69 [-354.1947..-200.5357] | it/evals=255/612 eff=81.7308% N=300 Mono-modal Volume: ~exp(-4.43) * Expected Volume: exp(-0.89) Quality: ok index : +1.0| ********************************************| +5.0 amplitude: +1.0e-12| ******************************************** *| +1.0e-10 Z=-299.1(0.00%) | Like=-290.64..-59.69 [-354.1947..-200.5357] | it/evals=268/633 eff=80.4805% N=300 Z=-296.1(0.00%) | Like=-289.08..-59.69 [-354.1947..-200.5357] | it/evals=270/635 eff=80.5970% N=300 Z=-280.4(0.00%) | Like=-271.38..-59.69 [-354.1947..-200.5357] | it/evals=287/657 eff=80.3922% N=300 Z=-268.5(0.00%) | Like=-263.09..-59.69 [-354.1947..-200.5357] | it/evals=300/673 eff=80.4290% N=300 Z=-257.9(0.00%) | Like=-249.91..-59.69 [-354.1947..-200.5357] | it/evals=319/695 eff=80.7595% N=300 Z=-247.3(0.00%) | Like=-240.63..-59.69 [-354.1947..-200.5357] | it/evals=330/708 eff=80.8824% N=300 Mono-modal Volume: ~exp(-5.11) * Expected Volume: exp(-1.12) Quality: ok index : +1.0| *******************************************| +5.0 amplitude: +1.0e-12| ******************************************* *| +1.0e-10 Z=-245.0(0.00%) | Like=-239.45..-59.69 [-354.1947..-200.5357] | it/evals=335/714 eff=80.9179% N=300 Z=-231.3(0.00%) | Like=-224.69..-59.65 [-354.1947..-200.5357] | it/evals=354/735 eff=81.3793% N=300 Z=-225.6(0.00%) | Like=-219.37..-59.65 [-354.1947..-200.5357] | it/evals=360/742 eff=81.4480% N=300 Z=-221.3(0.00%) | Like=-215.19..-59.28 [-354.1947..-200.5357] | it/evals=368/764 eff=79.3103% N=300 Z=-211.5(0.00%) | Like=-205.61..-59.28 [-354.1947..-200.5357] | it/evals=387/785 eff=79.7938% N=300 Z=-210.6(0.00%) | Like=-204.05..-59.28 [-354.1947..-200.5357] | it/evals=390/792 eff=79.2683% N=300 Mono-modal Volume: ~exp(-5.11) Expected Volume: exp(-1.34) Quality: ok index : +1.0| *****************************************| +5.0 amplitude: +1.0e-12| ********************************************| +1.0e-10 Z=-205.9(0.00%) | Like=-199.71..-59.28 [-200.4350..-138.3325] | it/evals=403/815 eff=78.2524% N=300 Z=-198.9(0.00%) | Like=-192.93..-59.28 [-200.4350..-138.3325] | it/evals=420/835 eff=78.5047% N=300 Z=-193.4(0.00%) | Like=-187.07..-59.28 [-200.4350..-138.3325] | it/evals=438/857 eff=78.6355% N=300 Z=-189.3(0.00%) | Like=-183.50..-59.28 [-200.4350..-138.3325] | it/evals=450/878 eff=77.8547% N=300 Z=-184.7(0.00%) | Like=-178.53..-59.28 [-200.4350..-138.3325] | it/evals=466/900 eff=77.6667% N=300 Mono-modal Volume: ~exp(-5.11) Expected Volume: exp(-1.56) Quality: ok index : +1.0| *********************************** | +5.0 amplitude: +1.0e-12| ******************************** **********| +1.0e-10 Z=-181.0(0.00%) | Like=-173.72..-59.28 [-200.4350..-138.3325] | it/evals=480/919 eff=77.5444% N=300 Z=-174.5(0.00%) | Like=-168.46..-59.28 [-200.4350..-138.3325] | it/evals=494/941 eff=77.0671% N=300 Z=-172.5(0.00%) | Like=-167.09..-59.28 [-200.4350..-138.3325] | it/evals=506/963 eff=76.3198% N=300 Z=-171.9(0.00%) | Like=-166.28..-59.28 [-200.4350..-138.3325] | it/evals=510/970 eff=76.1194% N=300 Z=-167.0(0.00%) | Like=-160.45..-59.28 [-200.4350..-138.3325] | it/evals=526/992 eff=76.0116% N=300 Mono-modal Volume: ~exp(-5.29) * Expected Volume: exp(-1.79) Quality: ok index : +1.0| ******************************* | +5.0 amplitude: +1.0e-12| ******************************* **********| +1.0e-10 Z=-164.5(0.00%) | Like=-158.47..-59.28 [-200.4350..-138.3325] | it/evals=536/1008 eff=75.7062% N=300 Z=-163.6(0.00%) | Like=-157.31..-59.28 [-200.4350..-138.3325] | it/evals=540/1012 eff=75.8427% N=300 Z=-159.5(0.00%) | Like=-152.18..-59.28 [-200.4350..-138.3325] | it/evals=553/1034 eff=75.3406% N=300 Z=-152.4(0.00%) | Like=-145.65..-59.28 [-200.4350..-138.3325] | it/evals=569/1056 eff=75.2646% N=300 Z=-152.0(0.00%) | Like=-145.62..-59.28 [-200.4350..-138.3325] | it/evals=570/1058 eff=75.1979% N=300 Z=-148.5(0.00%) | Like=-142.13..-59.28 [-200.4350..-138.3325] | it/evals=584/1080 eff=74.8718% N=300 Z=-145.1(0.00%) | Like=-138.99..-59.28 [-200.4350..-138.3325] | it/evals=600/1102 eff=74.8130% N=300 Mono-modal Volume: ~exp(-6.14) * Expected Volume: exp(-2.01) Quality: ok index : +1.0| **************************** +4.1 | +5.0 amplitude: +1.0e-12| ************************************* | +1.0e-10 Z=-144.5(0.00%) | Like=-138.35..-59.28 [-200.4350..-138.3325] | it/evals=603/1105 eff=74.9068% N=300 Z=-141.0(0.00%) | Like=-134.18..-59.28 [-138.3150..-103.3803] | it/evals=621/1127 eff=75.0907% N=300 Z=-138.5(0.00%) | Like=-131.60..-59.28 [-138.3150..-103.3803] | it/evals=630/1138 eff=75.1790% N=300 Z=-135.9(0.00%) | Like=-129.68..-59.28 [-138.3150..-103.3803] | it/evals=648/1160 eff=75.3488% N=300 Z=-133.9(0.00%) | Like=-127.45..-59.28 [-138.3150..-103.3803] | it/evals=660/1178 eff=75.1708% N=300 Mono-modal Volume: ~exp(-6.33) * Expected Volume: exp(-2.23) Quality: ok index : +1.0| +1.9 ************************* +4.0 | +5.0 amplitude: +1.0e-12| ********************************** | +1.0e-10 Z=-131.9(0.00%) | Like=-125.39..-59.28 [-138.3150..-103.3803] | it/evals=670/1195 eff=74.8603% N=300 Z=-127.9(0.00%) | Like=-120.79..-59.28 [-138.3150..-103.3803] | it/evals=686/1217 eff=74.8092% N=300 Z=-126.8(0.00%) | Like=-120.51..-59.28 [-138.3150..-103.3803] | it/evals=690/1222 eff=74.8373% N=300 Z=-124.8(0.00%) | Like=-118.88..-59.28 [-138.3150..-103.3803] | it/evals=703/1245 eff=74.3915% N=300 Z=-121.1(0.00%) | Like=-114.97..-59.28 [-138.3150..-103.3803] | it/evals=720/1267 eff=74.4571% N=300 Mono-modal Volume: ~exp(-6.42) * Expected Volume: exp(-2.46) Quality: ok index : +1.0| +2.0 ********************** +3.7 | +5.0 amplitude: +1.0e-12| ******************************** | +1.0e-10 Z=-119.0(0.00%) | Like=-112.73..-59.28 [-138.3150..-103.3803] | it/evals=737/1288 eff=74.5951% N=300 Z=-116.2(0.00%) | Like=-109.46..-59.28 [-138.3150..-103.3803] | it/evals=750/1308 eff=74.4048% N=300 Z=-113.4(0.00%) | Like=-107.16..-59.09 [-138.3150..-103.3803] | it/evals=769/1330 eff=74.6602% N=300 Z=-111.9(0.00%) | Like=-105.73..-59.09 [-138.3150..-103.3803] | it/evals=780/1341 eff=74.9280% N=300 Z=-109.4(0.00%) | Like=-102.69..-59.09 [-103.2797..-81.5359] | it/evals=799/1362 eff=75.2354% N=300 Mono-modal Volume: ~exp(-6.74) * Expected Volume: exp(-2.68) Quality: ok index : +1.0| +2.0 ******************** +3.6 | +5.0 amplitude: +1.0e-12| **************************** +7.6e-11 | +1.0e-10 Z=-108.5(0.00%) | Like=-102.05..-59.01 [-103.2797..-81.5359] | it/evals=804/1369 eff=75.2105% N=300 Z=-107.8(0.00%) | Like=-101.08..-59.01 [-103.2797..-81.5359] | it/evals=810/1375 eff=75.3488% N=300 Z=-105.9(0.00%) | Like=-99.60..-59.01 [-103.2797..-81.5359] | it/evals=825/1398 eff=75.1366% N=300 Z=-104.3(0.00%) | Like=-98.04..-59.01 [-103.2797..-81.5359] | it/evals=840/1417 eff=75.2014% N=300 Z=-102.2(0.00%) | Like=-95.77..-59.01 [-103.2797..-81.5359] | it/evals=858/1439 eff=75.3292% N=300 Z=-100.8(0.00%) | Like=-94.21..-59.01 [-103.2797..-81.5359] | it/evals=870/1461 eff=74.9354% N=300 Mono-modal Volume: ~exp(-6.74) Expected Volume: exp(-2.90) Quality: ok index : +1.0| +2.1 ******************* +3.5 | +5.0 amplitude: +1.0e-12| ************************* +7.3e-11 | +1.0e-10 Z=-98.4(0.00%) | Like=-91.91..-59.01 [-103.2797..-81.5359] | it/evals=887/1481 eff=75.1058% N=300 Z=-96.8(0.00%) | Like=-90.12..-59.01 [-103.2797..-81.5359] | it/evals=900/1499 eff=75.0626% N=300 Z=-94.7(0.00%) | Like=-87.96..-59.01 [-103.2797..-81.5359] | it/evals=914/1521 eff=74.8567% N=300 Z=-93.1(0.00%) | Like=-86.68..-59.01 [-103.2797..-81.5359] | it/evals=930/1542 eff=74.8792% N=300 Mono-modal Volume: ~exp(-7.09) * Expected Volume: exp(-3.13) Quality: ok index : +1.0| +2.1 **************** +3.4 | +5.0 amplitude: +1.0e-12| +2.6e-11 ********************** +7.0e-11 | +1.0e-10 Z=-92.5(0.00%) | Like=-85.93..-59.01 [-103.2797..-81.5359] | it/evals=938/1554 eff=74.8006% N=300 Z=-90.9(0.00%) | Like=-84.72..-59.01 [-103.2797..-81.5359] | it/evals=957/1575 eff=75.0588% N=300 Z=-90.7(0.00%) | Like=-84.21..-59.01 [-103.2797..-81.5359] | it/evals=960/1579 eff=75.0586% N=300 Z=-89.2(0.00%) | Like=-82.50..-59.01 [-103.2797..-81.5359] | it/evals=979/1600 eff=75.3077% N=300 Z=-88.2(0.00%) | Like=-81.67..-59.01 [-103.2797..-81.5359] | it/evals=990/1612 eff=75.4573% N=300 Mono-modal Volume: ~exp(-7.25) * Expected Volume: exp(-3.35) Quality: ok index : +1.0| +2.2 ************** +3.3 | +5.0 amplitude: +1.0e-12| +2.7e-11 ******************** +6.7e-11 | +1.0e-10 Z=-87.1(0.00%) | Like=-80.49..-59.01 [-81.5161..-69.7248] | it/evals=1005/1628 eff=75.6777% N=300 Z=-86.1(0.00%) | Like=-79.64..-59.01 [-81.5161..-69.7248] | it/evals=1020/1644 eff=75.8929% N=300 Z=-85.0(0.00%) | Like=-78.67..-59.01 [-81.5161..-69.7248] | it/evals=1036/1667 eff=75.7864% N=300 Z=-84.1(0.00%) | Like=-77.60..-59.01 [-81.5161..-69.7248] | it/evals=1050/1684 eff=75.8671% N=300 Z=-83.2(0.00%) | Like=-76.47..-59.01 [-81.5161..-69.7248] | it/evals=1064/1706 eff=75.6757% N=300 Mono-modal Volume: ~exp(-7.55) * Expected Volume: exp(-3.57) Quality: ok index : +1.0| +2.2 ************* +3.2 | +5.0 amplitude: +1.0e-12| +2.9e-11 ****************** +6.4e-11 | +1.0e-10 Z=-82.5(0.00%) | Like=-75.89..-59.01 [-81.5161..-69.7248] | it/evals=1072/1727 eff=75.1226% N=300 Z=-82.0(0.00%) | Like=-75.32..-59.01 [-81.5161..-69.7248] | it/evals=1080/1738 eff=75.1043% N=300 Z=-81.0(0.00%) | Like=-74.70..-59.01 [-81.5161..-69.7248] | it/evals=1098/1759 eff=75.2570% N=300 Z=-80.4(0.00%) | Like=-73.70..-59.01 [-81.5161..-69.7248] | it/evals=1110/1773 eff=75.3564% N=300 Z=-79.7(0.00%) | Like=-73.02..-59.01 [-81.5161..-69.7248] | it/evals=1122/1795 eff=75.0502% N=300 Mono-modal Volume: ~exp(-7.58) * Expected Volume: exp(-3.80) Quality: ok index : +1.0| +2.3 *********** +3.1 | +5.0 amplitude: +1.0e-12| +3.0e-11 **************** +6.1e-11 | +1.0e-10 Z=-78.8(0.00%) | Like=-72.32..-59.01 [-81.5161..-69.7248] | it/evals=1139/1815 eff=75.1815% N=300 Z=-78.7(0.00%) | Like=-72.32..-59.01 [-81.5161..-69.7248] | it/evals=1140/1816 eff=75.1979% N=300 Z=-78.0(0.00%) | Like=-71.73..-59.01 [-81.5161..-69.7248] | it/evals=1157/1838 eff=75.2276% N=300 Z=-77.6(0.00%) | Like=-71.32..-58.89 [-81.5161..-69.7248] | it/evals=1170/1856 eff=75.1928% N=300 Z=-77.1(0.00%) | Like=-71.02..-58.89 [-81.5161..-69.7248] | it/evals=1186/1879 eff=75.1108% N=300 Z=-76.7(0.00%) | Like=-70.40..-58.89 [-81.5161..-69.7248] | it/evals=1200/1897 eff=75.1409% N=300 Mono-modal Volume: ~exp(-7.84) * Expected Volume: exp(-4.02) Quality: ok index : +1.0| +2.3 ********** +3.1 | +5.0 amplitude: +1.0e-12| +3.1e-11 *************** +6.0e-11 | +1.0e-10 Z=-76.5(0.00%) | Like=-70.02..-58.89 [-81.5161..-69.7248] | it/evals=1206/1910 eff=74.9068% N=300 Z=-75.9(0.00%) | Like=-69.45..-58.89 [-69.7163..-65.7294] | it/evals=1223/1931 eff=74.9847% N=300 Z=-75.7(0.00%) | Like=-69.35..-58.89 [-69.7163..-65.7294] | it/evals=1230/1941 eff=74.9543% N=300 Z=-75.2(0.00%) | Like=-68.95..-58.89 [-69.7163..-65.7294] | it/evals=1245/1963 eff=74.8647% N=300 Z=-74.8(0.01%) | Like=-68.45..-58.89 [-69.7163..-65.7294] | it/evals=1260/1983 eff=74.8663% N=300 Mono-modal Volume: ~exp(-7.84) Expected Volume: exp(-4.24) Quality: ok index : +1.0| +2.3 ********* +3.0 | +5.0 amplitude: +1.0e-12| +3.3e-11 ************* +5.8e-11 | +1.0e-10 Z=-74.3(0.01%) | Like=-67.72..-58.89 [-69.7163..-65.7294] | it/evals=1277/2004 eff=74.9413% N=300 Z=-73.9(0.02%) | Like=-67.39..-58.89 [-69.7163..-65.7294] | it/evals=1290/2025 eff=74.7826% N=300 Z=-73.4(0.03%) | Like=-66.83..-58.89 [-69.7163..-65.7294] | it/evals=1305/2048 eff=74.6568% N=300 Z=-73.0(0.04%) | Like=-66.35..-58.89 [-69.7163..-65.7294] | it/evals=1320/2071 eff=74.5342% N=300 Z=-72.6(0.06%) | Like=-66.04..-58.89 [-69.7163..-65.7294] | it/evals=1334/2093 eff=74.4004% N=300 Mono-modal Volume: ~exp(-7.88) * Expected Volume: exp(-4.47) Quality: ok index : +1.0| +2.4 ******** +3.0 | +5.0 amplitude: +1.0e-12| +3.4e-11 ************ +5.6e-11 | +1.0e-10 Z=-72.4(0.07%) | Like=-65.80..-58.89 [-69.7163..-65.7294] | it/evals=1340/2104 eff=74.2794% N=300 Z=-72.1(0.10%) | Like=-65.47..-58.89 [-65.7037..-65.2088] | it/evals=1350/2114 eff=74.4212% N=300 Z=-71.7(0.15%) | Like=-65.08..-58.89 [-65.1194..-65.0808] | it/evals=1366/2135 eff=74.4414% N=300 Z=-71.3(0.21%) | Like=-64.73..-58.80 [-64.7496..-64.7292] | it/evals=1379/2157 eff=74.2596% N=300 Z=-71.3(0.22%) | Like=-64.70..-58.80 [-64.7045..-64.7019]*| it/evals=1380/2158 eff=74.2734% N=300 Z=-70.9(0.32%) | Like=-64.36..-58.80 [-64.3574..-64.3482]*| it/evals=1397/2180 eff=74.3085% N=300 Mono-modal Volume: ~exp(-8.54) * Expected Volume: exp(-4.69) Quality: ok index : +1.0| +2.4 ******** +2.9 | +5.0 amplitude: +1.0e-12| +3.5e-11 ********** +5.5e-11 | +1.0e-10 Z=-70.7(0.41%) | Like=-64.20..-58.80 [-64.2016..-64.1922]*| it/evals=1407/2194 eff=74.2872% N=300 Z=-70.6(0.43%) | Like=-64.16..-58.80 [-64.1604..-64.1534]*| it/evals=1410/2197 eff=74.3279% N=300 Z=-70.3(0.58%) | Like=-63.92..-58.80 [-63.9230..-63.9157]*| it/evals=1426/2219 eff=74.3095% N=300 Z=-70.1(0.74%) | Like=-63.62..-58.80 [-63.6409..-63.6233] | it/evals=1440/2236 eff=74.3802% N=300 Z=-69.8(1.02%) | Like=-63.33..-58.80 [-63.3424..-63.3251] | it/evals=1458/2258 eff=74.4637% N=300 Z=-69.6(1.21%) | Like=-63.08..-58.77 [-63.0769..-63.0671]*| it/evals=1470/2279 eff=74.2799% N=300 Mono-modal Volume: ~exp(-8.88) * Expected Volume: exp(-4.91) Quality: ok index : +1.0| +2.4 ******* +2.9 | +5.0 amplitude: +1.0e-12| +3.7e-11 ********* +5.4e-11 | +1.0e-10 Z=-69.5(1.28%) | Like=-62.97..-58.77 [-62.9696..-62.9658]*| it/evals=1474/2285 eff=74.2569% N=300 Z=-69.3(1.71%) | Like=-62.82..-58.77 [-62.8166..-62.8151]*| it/evals=1491/2306 eff=74.3270% N=300 Z=-69.1(1.89%) | Like=-62.71..-58.77 [-62.7532..-62.7148] | it/evals=1500/2317 eff=74.3679% N=300 Z=-69.0(2.29%) | Like=-62.53..-58.77 [-62.5690..-62.5299] | it/evals=1514/2340 eff=74.2157% N=300 Z=-68.8(2.68%) | Like=-62.35..-58.76 [-62.3667..-62.3527] | it/evals=1527/2362 eff=74.0543% N=300 Z=-68.7(2.78%) | Like=-62.33..-58.76 [-62.3405..-62.3297] | it/evals=1530/2366 eff=74.0561% N=300 Mono-modal Volume: ~exp(-9.29) * Expected Volume: exp(-5.14) Quality: ok index : +1.0| +2.5 ****** +2.9 | +5.0 amplitude: +1.0e-12| +3.7e-11 ******** +5.3e-11 | +1.0e-10 Z=-68.6(3.15%) | Like=-62.22..-58.76 [-62.2355..-62.2199] | it/evals=1541/2381 eff=74.0509% N=300 Z=-68.4(3.90%) | Like=-61.96..-58.76 [-61.9593..-61.9587]*| it/evals=1560/2402 eff=74.2150% N=300 Z=-68.2(4.54%) | Like=-61.84..-58.76 [-61.8635..-61.8425] | it/evals=1574/2424 eff=74.1055% N=300 Z=-68.1(5.38%) | Like=-61.73..-58.76 [-61.7375..-61.7261] | it/evals=1590/2446 eff=74.0913% N=300 Z=-67.9(6.37%) | Like=-61.58..-58.75 [-61.6099..-61.5791] | it/evals=1607/2467 eff=74.1578% N=300 Mono-modal Volume: ~exp(-9.43) * Expected Volume: exp(-5.36) Quality: ok index : +1.0| +2.5 ****** +2.9 | +5.0 amplitude: +1.0e-12| +3.8e-11 ******** +5.2e-11 | +1.0e-10 Z=-67.9(6.38%) | Like=-61.58..-58.75 [-61.5762..-61.5745]*| it/evals=1608/2468 eff=74.1697% N=300 Z=-67.8(7.05%) | Like=-61.44..-58.75 [-61.4585..-61.4413] | it/evals=1620/2481 eff=74.2779% N=300 Z=-67.6(8.53%) | Like=-61.24..-58.75 [-61.2448..-61.2328] | it/evals=1641/2502 eff=74.5232% N=300 Z=-67.6(9.26%) | Like=-61.18..-58.75 [-61.1947..-61.1823] | it/evals=1650/2512 eff=74.5931% N=300 Z=-67.4(10.39%) | Like=-61.01..-58.75 [-61.0279..-61.0083] | it/evals=1667/2534 eff=74.6195% N=300 Mono-modal Volume: ~exp(-9.47) * Expected Volume: exp(-5.58) Quality: ok index : +1.0| +2.5 ****** +2.8 | +5.0 amplitude: +1.0e-12| +3.9e-11 ******* +5.1e-11 | +1.0e-10 Z=-67.4(10.96%) | Like=-60.94..-58.75 [-60.9416..-60.9412]*| it/evals=1675/2545 eff=74.6102% N=300 Z=-67.3(11.38%) | Like=-60.93..-58.75 [-60.9253..-60.9209]*| it/evals=1680/2550 eff=74.6667% N=300 Z=-67.2(12.76%) | Like=-60.77..-58.75 [-60.8034..-60.7690] | it/evals=1698/2572 eff=74.7359% N=300 Z=-67.1(13.89%) | Like=-60.71..-58.75 [-60.7073..-60.7054]*| it/evals=1710/2587 eff=74.7704% N=300 Z=-67.0(15.10%) | Like=-60.64..-58.75 [-60.6408..-60.6386]*| it/evals=1722/2609 eff=74.5777% N=300 Z=-66.9(16.91%) | Like=-60.54..-58.75 [-60.5419..-60.5181] | it/evals=1740/2630 eff=74.6781% N=300 Mono-modal Volume: ~exp(-9.75) * Expected Volume: exp(-5.81) Quality: ok index : +1.0| +2.5 **** +2.8 | +5.0 amplitude: +1.0e-12| +3.9e-11 ****** +5.0e-11 | +1.0e-10 Z=-66.9(17.15%) | Like=-60.51..-58.75 [-60.5105..-60.5042]*| it/evals=1742/2632 eff=74.6998% N=300 Z=-66.8(19.02%) | Like=-60.41..-58.75 [-60.4239..-60.4088] | it/evals=1760/2653 eff=74.7981% N=300 Z=-66.8(19.97%) | Like=-60.34..-58.75 [-60.3436..-60.3388]*| it/evals=1770/2663 eff=74.9048% N=300 Z=-66.7(21.76%) | Like=-60.26..-58.75 [-60.2646..-60.2595]*| it/evals=1787/2684 eff=74.9581% N=300 Z=-66.6(23.16%) | Like=-60.21..-58.75 [-60.2149..-60.2146]*| it/evals=1800/2703 eff=74.9064% N=300 Mono-modal Volume: ~exp(-10.33) * Expected Volume: exp(-6.03) Quality: ok index : +1.0| +2.5 **** +2.8 | +5.0 amplitude: +1.0e-12| +3.9e-11 ****** +5.0e-11 | +1.0e-10 Z=-66.6(24.11%) | Like=-60.16..-58.75 [-60.1678..-60.1566] | it/evals=1809/2716 eff=74.8758% N=300 Z=-66.5(25.83%) | Like=-60.06..-58.75 [-60.0857..-60.0600] | it/evals=1824/2739 eff=74.7847% N=300 Z=-66.5(26.60%) | Like=-60.04..-58.75 [-60.0387..-60.0331]*| it/evals=1830/2746 eff=74.8160% N=300 Z=-66.4(28.88%) | Like=-59.97..-58.75 [-59.9653..-59.9577]*| it/evals=1848/2768 eff=74.8784% N=300 Z=-66.3(30.25%) | Like=-59.91..-58.75 [-59.9095..-59.9086]*| it/evals=1860/2784 eff=74.8792% N=300 Z=-66.3(31.98%) | Like=-59.86..-58.75 [-59.8643..-59.8621]*| it/evals=1874/2806 eff=74.7805% N=300 Mono-modal Volume: ~exp(-10.47) * Expected Volume: exp(-6.25) Quality: ok index : +1.0| +2.5 **** +2.8 | +5.0 amplitude: +1.0e-12| +4.0e-11 ****** +4.9e-11 | +1.0e-10 Z=-66.3(32.27%) | Like=-59.85..-58.75 [-59.8542..-59.8509]*| it/evals=1876/2808 eff=74.8006% N=300 Z=-66.2(33.95%) | Like=-59.82..-58.75 [-59.8210..-59.8198]*| it/evals=1890/2826 eff=74.8219% N=300 Z=-66.1(36.19%) | Like=-59.76..-58.75 [-59.7646..-59.7549]*| it/evals=1910/2847 eff=74.9902% N=300 Z=-66.1(37.39%) | Like=-59.71..-58.75 [-59.7125..-59.7061]*| it/evals=1920/2859 eff=75.0293% N=300 Z=-66.1(39.56%) | Like=-59.67..-58.75 [-59.6746..-59.6733]*| it/evals=1937/2883 eff=74.9903% N=300 Mono-modal Volume: ~exp(-10.47) Expected Volume: exp(-6.48) Quality: ok index : +1.0| +2.6 **** +2.8 | +5.0 amplitude: +1.0e-12| +4.0e-11 ***** +4.9e-11 | +1.0e-10 Z=-66.0(41.09%) | Like=-59.64..-58.75 [-59.6434..-59.6422]*| it/evals=1950/2899 eff=75.0289% N=300 Z=-66.0(42.65%) | Like=-59.61..-58.75 [-59.6073..-59.6066]*| it/evals=1963/2921 eff=74.8951% N=300 Z=-65.9(44.44%) | Like=-59.56..-58.75 [-59.5646..-59.5638]*| it/evals=1978/2943 eff=74.8392% N=300 Z=-65.9(44.69%) | Like=-59.56..-58.75 [-59.5638..-59.5466] | it/evals=1980/2945 eff=74.8582% N=300 Z=-65.9(46.57%) | Like=-59.49..-58.75 [-59.4906..-59.4902]*| it/evals=1995/2968 eff=74.7751% N=300 Z=-65.9(48.08%) | Like=-59.47..-58.75 [-59.4708..-59.4702]*| it/evals=2008/2990 eff=74.6468% N=300 Mono-modal Volume: ~exp(-10.64) * Expected Volume: exp(-6.70) Quality: ok index : +1.0| +2.6 **** +2.8 | +5.0 amplitude: +1.0e-12| +4.1e-11 **** +4.8e-11 | +1.0e-10 Z=-65.9(48.36%) | Like=-59.47..-58.75 [-59.4669..-59.4644]*| it/evals=2010/2992 eff=74.6657% N=300 Z=-65.8(50.14%) | Like=-59.44..-58.75 [-59.4402..-59.4365]*| it/evals=2025/3014 eff=74.6131% N=300 Z=-65.8(51.83%) | Like=-59.38..-58.75 [-59.3775..-59.3710]*| it/evals=2040/3035 eff=74.5887% N=300 Z=-65.8(53.49%) | Like=-59.34..-58.75 [-59.3386..-59.3378]*| it/evals=2055/3057 eff=74.5375% N=300 Z=-65.7(55.19%) | Like=-59.31..-58.75 [-59.3141..-59.3114]*| it/evals=2070/3082 eff=74.4069% N=300 Mono-modal Volume: ~exp(-11.27) * Expected Volume: exp(-6.92) Quality: ok index : +1.0| +2.6 **** +2.8 | +5.0 amplitude: +1.0e-12| +4.1e-11 **** +4.8e-11 | +1.0e-10 Z=-65.7(55.88%) | Like=-59.30..-58.75 [-59.2981..-59.2957]*| it/evals=2077/3092 eff=74.3911% N=300 Z=-65.7(57.96%) | Like=-59.27..-58.75 [-59.2735..-59.2710]*| it/evals=2095/3113 eff=74.4756% N=300 Z=-65.7(58.47%) | Like=-59.26..-58.75 [-59.2636..-59.2626]*| it/evals=2100/3118 eff=74.5209% N=300 Z=-65.6(60.22%) | Like=-59.24..-58.75 [-59.2436..-59.2432]*| it/evals=2117/3139 eff=74.5685% N=300 Z=-65.6(61.55%) | Like=-59.22..-58.75 [-59.2207..-59.2203]*| it/evals=2130/3157 eff=74.5537% N=300 Mono-modal Volume: ~exp(-11.27) Expected Volume: exp(-7.15) Quality: ok index : +1.0| +2.6 ** +2.7 | +5.0 amplitude: +1.0e-12| +4.2e-11 **** +4.7e-11 | +1.0e-10 Z=-65.6(63.01%) | Like=-59.21..-58.75 [-59.2058..-59.2056]*| it/evals=2145/3177 eff=74.5568% N=300 Z=-65.6(64.42%) | Like=-59.18..-58.75 [-59.1772..-59.1760]*| it/evals=2160/3195 eff=74.6114% N=300 Z=-65.5(65.98%) | Like=-59.15..-58.75 [-59.1544..-59.1528]*| it/evals=2176/3216 eff=74.6228% N=300 Z=-65.5(67.20%) | Like=-59.14..-58.75 [-59.1391..-59.1378]*| it/evals=2190/3237 eff=74.5659% N=300 Z=-65.5(68.51%) | Like=-59.12..-58.75 [-59.1186..-59.1171]*| it/evals=2205/3259 eff=74.5184% N=300 Mono-modal Volume: ~exp(-11.49) * Expected Volume: exp(-7.37) Quality: ok index : +1.0| +2.6 ** +2.7 | +5.0 amplitude: +1.0e-12| +4.2e-11 **** +4.7e-11 | +1.0e-10 Z=-65.5(68.99%) | Like=-59.11..-58.75 [-59.1149..-59.1149]*| it/evals=2211/3270 eff=74.4444% N=300 Z=-65.5(69.77%) | Like=-59.10..-58.75 [-59.1011..-59.0976]*| it/evals=2220/3282 eff=74.4467% N=300 [ultranest] Explored until L=-6e+01 [ultranest] Likelihood function evaluations: 3285 [ultranest] logZ = -65.11 +- 0.1001 [ultranest] Effective samples strategy satisfied (ESS = 993.1, need >400) [ultranest] Posterior uncertainty strategy is satisfied (KL: 0.46+-0.07 nat, need <0.50 nat) [ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.28, need <0.5) [ultranest] logZ error budget: single: 0.13 bs:0.10 tail:0.26 total:0.28 required:<0.50 [ultranest] done iterating. logZ = -65.123 +- 0.336 single instance: logZ = -65.123 +- 0.134 bootstrapped : logZ = -65.107 +- 0.210 tail : logZ = +- 0.262 insert order U test : converged: True correlation: inf iterations index : 2.414 │ ▁▁▁▁▁▂▂▂▃▃▄▄▆▅▅▇▆▆▇▅▅▄▄▄▄▃▂▁▁▁▁▁▁▁▁▁▁ │2.974 2.671 +- 0.086 amplitude : 0.0000000000329│ ▁ ▁ ▁▁▁▁▂▃▃▂▄▅▆▇▇▆▇▇▆▇▅▅▄▄▂▂▁▁▁▁▁▁ ▁▁ │0.0000000000559 0.0000000000444 +- 0.0000000000030 .. GENERATED FROM PYTHON SOURCE LINES 219-270 Understanding the outputs ------------------------- In the Jupyter notebook, you should be able to see an interactive visualisation of how the parameter space shrinks which starts from the (min,max) shrinks down towards the optimal parameters. The output above is filled with interesting information. Here we provide a short description of the most relevant information provided above. For more detailed information see the `UltraNest docs <https://johannesbuchner.github.io/UltraNest/issues.html#what-does-the-status-line-mean>`__. **During the sampling** `Z=-68.8(0.53%) | Like=-63.96..-58.75 [-63.9570..-63.9539]*| it/evals=640/1068 eff=73.7327% N=300` Some important information here is: - Progress (0.53%): the completed fraction of the integral. This is not a time progress bar. Stays at zero for a good fraction of the run. - Efficiency (eff value) of the sampling: this indicates out of the proposed new points, how many were accepted. If your efficiency is too small (<<1%), maybe you should revise your priors (e.g use a LogUniform prior for the normalisation). **Final outputs** The final lines indicate that all three “convergence” strategies are satisfied (samples, posterior uncertainty, and evidence uncertainty). `logZ = -65.104 +- 0.292` The main goal of the Nested sampling algorithm is to estimate Z (the Bayesian evidence) which is given above together with an uncertainty. In a similar way to deltaLogLike and deltaAIC, deltaLogZ values can be used for model comparison. For more information see : `on the use of the evidence for model comparison <https://ned.ipac.caltech.edu/level5/Sept13/Trotta/Trotta4.html>`__. An interesting comparison of the efficiency and false discovery rate of model selection with deltaLogLike and deltaLogZ is given in Appendix C of `Buchner et al., 2014 <https://ui.adsabs.harvard.edu/abs/2014A%2526A...564A.125B%252F/>`__. **Results stored on disk** if `log_dir` is set to a name where the results will be stored, then a directory is created containing many useful results and plots. A description of these outputs is given in the `Ultranest docs <https://johannesbuchner.github.io/UltraNest/performance.html#output-files>`__. .. GENERATED FROM PYTHON SOURCE LINES 273-276 Results ------- .. GENERATED FROM PYTHON SOURCE LINES 279-294 Within a Bayesian analysis, the concept of best-fit has to be viewed differently from what is done in a gradient descent fit. The output of the Bayesian analysis is the posterior distribution and there is no “best-fit” output. One has to define, based on the posteriors, what we want to consider as “best-fit” and several options are possible: - the mean of the distribution - the median - the lowest likelihood value By default the `~gammapy.modeling.models.DatasetModels` will be updated with the `mean` of the posterior distributions. .. GENERATED FROM PYTHON SOURCE LINES 294-298 .. code-block:: Python print(result_joint.models) .. rst-class:: sphx-glr-script-out .. code-block:: none DatasetModels Component 0: SkyModel Name : crab Datasets names : None Spectral model type : PowerLawSpectralModel Spatial model type : Temporal model type : Parameters: index : 2.671 +/- 0.09 amplitude : 4.44e-11 +/- 3.0e-12 1 / (TeV s cm2) reference (frozen): 1.000 TeV .. GENERATED FROM PYTHON SOURCE LINES 299-303 The `~gammapy.modeling.Sampler` class returns a very rich dictionnary. The most “standard” information about the posterior distributions can be found in : .. GENERATED FROM PYTHON SOURCE LINES 303-307 .. code-block:: Python print(result_joint.sampler_results["posterior"]) .. rst-class:: sphx-glr-script-out .. code-block:: none {'mean': [2.671437963604333, 4.4379999340797087e-11], 'stdev': [0.08632788455158054, 3.0230326072490516e-12], 'median': [2.6701716063531142, 4.4274342516343e-11], 'errlo': [2.582916276593124, 4.137212345350785e-11], 'errup': [2.7590040954310164, 4.741342138489821e-11], 'information_gain_bits': [2.7137192768396257, 3.1240113731335293]} .. GENERATED FROM PYTHON SOURCE LINES 308-319 Besides mean, errors, etc, an interesting value is the `information gain` which estimates how much the posterior distribution has shrinked with respect to the prior (i.e. how much we’ve learned). A value < 1 means that the parameter is poorly constrained within the prior range (we haven't learned much with respect to our prior assumption). For a physical example see this `example <https://arxiv.org/abs/2205.00009>`__. The `~gammapy.modeling.SamplerResult` dictionary contains also other interesting information : .. GENERATED FROM PYTHON SOURCE LINES 319-323 .. code-block:: Python print(result_joint.sampler_results.keys()) .. rst-class:: sphx-glr-script-out .. code-block:: none dict_keys(['niter', 'logz', 'logzerr', 'logz_bs', 'logz_single', 'logzerr_tail', 'logzerr_bs', 'ess', 'H', 'Herr', 'posterior', 'weighted_samples', 'samples', 'maximum_likelihood', 'ncall', 'paramnames', 'logzerr_single', 'insertion_order_MWW_test']) .. GENERATED FROM PYTHON SOURCE LINES 324-327 Of particular interest, the samples used in the process to approximate the posterior distribution can be accessed via : .. GENERATED FROM PYTHON SOURCE LINES 327-337 .. code-block:: Python for i, n in enumerate(model.parameters.free_parameters.names): s = result_joint.samples[:, i] fig, ax = plt.subplots() ax.hist(s, bins=30) ax.axvline(np.mean(s), ls="--", color="red") ax.set_xlabel(n) plt.show() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /tutorials/api/images/sphx_glr_nested_sampling_Crab_001.png :alt: nested sampling Crab :srcset: /tutorials/api/images/sphx_glr_nested_sampling_Crab_001.png :class: sphx-glr-multi-img * .. image-sg:: /tutorials/api/images/sphx_glr_nested_sampling_Crab_002.png :alt: nested sampling Crab :srcset: /tutorials/api/images/sphx_glr_nested_sampling_Crab_002.png :class: sphx-glr-multi-img .. GENERATED FROM PYTHON SOURCE LINES 338-346 While the above plots are interesting, the real strength of the Bayesian analysis is to visualise all parameters correlations which is usually done using “corner plots”. Ultranest corner plot function is a wrapper around the `corner <https://corner.readthedocs.io/en/latest/api>`__ package. See the above link for optional keywords. Other packages exist for corner plots, like `chainconsumer <https://samreay.github.io/ChainConsumer>`__ which is discussed later in this tutorial. .. GENERATED FROM PYTHON SOURCE LINES 346-361 .. code-block:: Python from ultranest.plot import cornerplot cornerplot( result_joint.sampler_results, plot_datapoints=True, plot_density=True, bins=20, title_fmt=".2e", smooth=False, ) plt.show() .. image-sg:: /tutorials/api/images/sphx_glr_nested_sampling_Crab_003.png :alt: index = ${2.67e+00}_{-8.71e-02}^{+8.88e-02}$, amplitude = ${4.43e-11}_{-2.90e-12}^{+3.13e-12}$ :srcset: /tutorials/api/images/sphx_glr_nested_sampling_Crab_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 363-369 Individual run analysis ----------------------- Now we’ll analyse several Crab runs individually so that we can compare them. .. GENERATED FROM PYTHON SOURCE LINES 369-375 .. code-block:: Python result_0 = sampler.run(datasets[0]) result_1 = sampler.run(datasets[1]) result_2 = sampler.run(datasets[2]) .. rst-class:: sphx-glr-script-out .. code-block:: none [ultranest] Sampling 300 live points from prior ... Mono-modal Volume: ~exp(-4.18) * Expected Volume: exp(0.00) Quality: ok index : +1.0|************************************************| +5.0 amplitude: +1.0e-12|********************* ******** ******** ********| +1.0e-10 Z=-inf(0.00%) | Like=-1231.24..-21.10 [-1231.2416..-109.7661] | it/evals=0/301 eff=0.0000% N=300 Z=-175.3(0.00%) | Like=-170.50..-21.10 [-1231.2416..-109.7661] | it/evals=30/335 eff=85.7143% N=300 Z=-165.2(0.00%) | Like=-160.54..-21.10 [-1231.2416..-109.7661] | it/evals=60/368 eff=88.2353% N=300 Mono-modal Volume: ~exp(-4.18) Expected Volume: exp(-0.22) Quality: ok index : +1.0|************************************************| +5.0 amplitude: +1.0e-12|*************************** ** *** **** ***** *| +1.0e-10 Z=-155.8(0.00%) | Like=-151.14..-21.10 [-1231.2416..-109.7661] | it/evals=90/400 eff=90.0000% N=300 Z=-144.5(0.00%) | Like=-139.33..-21.10 [-1231.2416..-109.7661] | it/evals=120/438 eff=86.9565% N=300 Mono-modal Volume: ~exp(-4.48) * Expected Volume: exp(-0.45) Quality: ok index : +1.0| ***********************************************| +5.0 amplitude: +1.0e-12|*************************** ** *** ** * ***** *| +1.0e-10 Z=-140.0(0.00%) | Like=-134.86..-21.10 [-1231.2416..-109.7661] | it/evals=134/453 eff=87.5817% N=300 Z=-133.6(0.00%) | Like=-128.29..-21.10 [-1231.2416..-109.7661] | it/evals=150/472 eff=87.2093% N=300 Z=-122.6(0.00%) | Like=-117.20..-21.10 [-1231.2416..-109.7661] | it/evals=180/508 eff=86.5385% N=300 Mono-modal Volume: ~exp(-4.48) Expected Volume: exp(-0.67) Quality: ok index : +1.0| *********************************************| +5.0 amplitude: +1.0e-12| ***************************** *** ** * ***** *| +1.0e-10 Z=-113.4(0.00%) | Like=-107.69..-21.10 [-109.3278..-69.7998] | it/evals=202/545 eff=82.4490% N=300 Z=-110.1(0.00%) | Like=-104.37..-21.10 [-109.3278..-69.7998] | it/evals=210/556 eff=82.0312% N=300 Z=-102.2(0.00%) | Like=-97.07..-21.10 [-109.3278..-69.7998] | it/evals=240/596 eff=81.0811% N=300 Z=-95.1(0.00%) | Like=-89.85..-21.10 [-109.3278..-69.7998] | it/evals=266/637 eff=78.9318% N=300 Mono-modal Volume: ~exp(-4.79) * Expected Volume: exp(-0.89) Quality: ok index : +1.0| ********************************************| +5.0 amplitude: +1.0e-12| ******************************** **** ***** | +1.0e-10 Z=-94.6(0.00%) | Like=-89.05..-21.10 [-109.3278..-69.7998] | it/evals=268/639 eff=79.0560% N=300 Z=-94.1(0.00%) | Like=-88.85..-21.10 [-109.3278..-69.7998] | it/evals=270/642 eff=78.9474% N=300 Z=-87.1(0.00%) | Like=-81.86..-21.10 [-109.3278..-69.7998] | it/evals=300/678 eff=79.3651% N=300 Z=-81.8(0.00%) | Like=-77.09..-21.10 [-109.3278..-69.7998] | it/evals=330/718 eff=78.9474% N=300 Mono-modal Volume: ~exp(-4.79) Expected Volume: exp(-1.12) Quality: ok index : +1.0| *******************************************| +5.0 amplitude: +1.0e-12| ******************************* **** ** | +1.0e-10 Z=-79.1(0.00%) | Like=-74.39..-21.10 [-109.3278..-69.7998] | it/evals=350/761 eff=75.9219% N=300 Z=-78.1(0.00%) | Like=-73.41..-21.10 [-109.3278..-69.7998] | it/evals=360/772 eff=76.2712% N=300 Z=-76.3(0.00%) | Like=-71.72..-21.10 [-109.3278..-69.7998] | it/evals=382/813 eff=74.4639% N=300 Z=-75.6(0.00%) | Like=-71.09..-21.10 [-109.3278..-69.7998] | it/evals=390/823 eff=74.5698% N=300 Mono-modal Volume: ~exp(-4.79) Expected Volume: exp(-1.34) Quality: ok index : +1.0| ************************************** * | +5.0 amplitude: +1.0e-12| ******************************* ****** | +1.0e-10 Z=-73.1(0.00%) | Like=-67.86..-21.10 [-69.2927..-47.6463] | it/evals=414/861 eff=73.7968% N=300 Z=-72.3(0.00%) | Like=-67.34..-21.10 [-69.2927..-47.6463] | it/evals=420/870 eff=73.6842% N=300 Z=-70.1(0.00%) | Like=-65.01..-20.88 [-69.2927..-47.6463] | it/evals=439/912 eff=71.7320% N=300 Z=-68.9(0.00%) | Like=-63.83..-20.88 [-69.2927..-47.6463] | it/evals=450/935 eff=70.8661% N=300 Mono-modal Volume: ~exp(-5.12) * Expected Volume: exp(-1.56) Quality: ok index : +1.0| ********************************** | +5.0 amplitude: +1.0e-12| ****************************** *** +7.9e-11| +1.0e-10 Z=-67.0(0.00%) | Like=-61.99..-20.88 [-69.2927..-47.6463] | it/evals=469/966 eff=70.4204% N=300 Z=-66.0(0.00%) | Like=-61.01..-20.88 [-69.2927..-47.6463] | it/evals=480/980 eff=70.5882% N=300 Z=-63.5(0.00%) | Like=-58.25..-20.88 [-69.2927..-47.6463] | it/evals=505/1022 eff=69.9446% N=300 Z=-63.0(0.00%) | Like=-58.12..-20.88 [-69.2927..-47.6463] | it/evals=510/1031 eff=69.7674% N=300 Mono-modal Volume: ~exp(-5.87) * Expected Volume: exp(-1.79) Quality: ok index : +1.0| **************************** +4.0 | +5.0 amplitude: +1.0e-12| ******************************** +7.5e-11 | +1.0e-10 Z=-61.1(0.00%) | Like=-56.11..-20.54 [-69.2927..-47.6463] | it/evals=536/1069 eff=69.7009% N=300 Z=-60.7(0.00%) | Like=-55.35..-20.54 [-69.2927..-47.6463] | it/evals=540/1075 eff=69.6774% N=300 Z=-57.6(0.00%) | Like=-52.27..-20.54 [-69.2927..-47.6463] | it/evals=567/1115 eff=69.5706% N=300 Z=-57.3(0.00%) | Like=-52.14..-20.54 [-69.2927..-47.6463] | it/evals=570/1120 eff=69.5122% N=300 Z=-55.5(0.00%) | Like=-50.41..-20.54 [-69.2927..-47.6463] | it/evals=594/1160 eff=69.0698% N=300 Z=-55.0(0.00%) | Like=-49.91..-20.54 [-69.2927..-47.6463] | it/evals=600/1168 eff=69.1244% N=300 Mono-modal Volume: ~exp(-6.12) * Expected Volume: exp(-2.01) Quality: ok index : +1.0| ************************** +3.8 | +5.0 amplitude: +1.0e-12| ************************** * +7.1e-11 | +1.0e-10 Z=-54.8(0.00%) | Like=-49.69..-20.54 [-69.2927..-47.6463] | it/evals=603/1174 eff=68.9931% N=300 Z=-52.9(0.00%) | Like=-47.74..-20.54 [-69.2927..-47.6463] | it/evals=630/1208 eff=69.3833% N=300 Z=-51.1(0.00%) | Like=-45.84..-20.54 [-47.6004..-34.7508] | it/evals=660/1246 eff=69.7674% N=300 Mono-modal Volume: ~exp(-6.12) Expected Volume: exp(-2.23) Quality: ok index : +1.0| ************************ +3.7 | +5.0 amplitude: +1.0e-12| ************************* +6.4e-11 | +1.0e-10 Z=-49.0(0.00%) | Like=-43.63..-20.47 [-47.6004..-34.7508] | it/evals=687/1284 eff=69.8171% N=300 Z=-48.8(0.00%) | Like=-43.58..-20.47 [-47.6004..-34.7508] | it/evals=690/1287 eff=69.9088% N=300 Z=-47.5(0.00%) | Like=-42.26..-20.47 [-47.6004..-34.7508] | it/evals=713/1328 eff=69.3580% N=300 Z=-47.0(0.00%) | Like=-41.78..-20.47 [-47.6004..-34.7508] | it/evals=720/1336 eff=69.4981% N=300 Mono-modal Volume: ~exp(-6.57) * Expected Volume: exp(-2.46) Quality: ok index : +1.0| ********************* +3.5 | +5.0 amplitude: +1.0e-12| ************************ +6.1e-11 | +1.0e-10 Z=-45.9(0.00%) | Like=-40.43..-20.47 [-47.6004..-34.7508] | it/evals=737/1359 eff=69.5940% N=300 Z=-45.0(0.00%) | Like=-39.47..-20.47 [-47.6004..-34.7508] | it/evals=750/1375 eff=69.7674% N=300 Z=-42.9(0.00%) | Like=-37.36..-20.47 [-47.6004..-34.7508] | it/evals=778/1414 eff=69.8384% N=300 Z=-42.7(0.00%) | Like=-37.23..-20.47 [-47.6004..-34.7508] | it/evals=780/1416 eff=69.8925% N=300 Mono-modal Volume: ~exp(-6.73) * Expected Volume: exp(-2.68) Quality: ok index : +1.0| +2.0 ******************* +3.4 | +5.0 amplitude: +1.0e-12| ********************* +5.9e-11 | +1.0e-10 Z=-41.4(0.00%) | Like=-36.01..-20.47 [-47.6004..-34.7508] | it/evals=804/1448 eff=70.0348% N=300 Z=-41.1(0.00%) | Like=-35.73..-20.47 [-47.6004..-34.7508] | it/evals=810/1454 eff=70.1906% N=300 Z=-39.7(0.00%) | Like=-34.41..-20.47 [-34.7450..-27.8260] | it/evals=840/1493 eff=70.4107% N=300 Z=-38.4(0.00%) | Like=-32.95..-20.47 [-34.7450..-27.8260] | it/evals=868/1533 eff=70.3974% N=300 Z=-38.4(0.00%) | Like=-32.89..-20.47 [-34.7450..-27.8260] | it/evals=870/1535 eff=70.4453% N=300 Mono-modal Volume: ~exp(-7.04) * Expected Volume: exp(-2.90) Quality: ok index : +1.0| +2.0 **************** +3.3 | +5.0 amplitude: +1.0e-12| ******************* +5.6e-11 | +1.0e-10 Z=-38.3(0.00%) | Like=-32.82..-20.47 [-34.7450..-27.8260] | it/evals=871/1536 eff=70.4693% N=300 Z=-37.1(0.00%) | Like=-31.71..-20.47 [-34.7450..-27.8260] | it/evals=900/1576 eff=70.5329% N=300 Z=-36.2(0.00%) | Like=-30.89..-20.47 [-34.7450..-27.8260] | it/evals=927/1617 eff=70.3872% N=300 Z=-36.1(0.00%) | Like=-30.82..-20.47 [-34.7450..-27.8260] | it/evals=930/1623 eff=70.2948% N=300 Mono-modal Volume: ~exp(-7.22) * Expected Volume: exp(-3.13) Quality: ok index : +1.0| +2.1 *************** +3.2 | +5.0 amplitude: +1.0e-12| ***************** +5.4e-11 | +1.0e-10 Z=-35.9(0.00%) | Like=-30.50..-20.47 [-34.7450..-27.8260] | it/evals=938/1637 eff=70.1571% N=300 Z=-35.2(0.01%) | Like=-29.69..-20.47 [-34.7450..-27.8260] | it/evals=960/1662 eff=70.4846% N=300 Z=-34.3(0.02%) | Like=-28.83..-20.47 [-34.7450..-27.8260] | it/evals=987/1701 eff=70.4497% N=300 Z=-34.2(0.02%) | Like=-28.77..-20.47 [-34.7450..-27.8260] | it/evals=990/1708 eff=70.3125% N=300 Mono-modal Volume: ~exp(-7.22) Expected Volume: exp(-3.35) Quality: ok index : +1.0| +2.1 ************* +3.1 | +5.0 amplitude: +1.0e-12| **************** +5.1e-11 | +1.0e-10 Z=-33.6(0.04%) | Like=-28.14..-20.47 [-34.7450..-27.8260] | it/evals=1014/1744 eff=70.2216% N=300 Z=-33.4(0.05%) | Like=-28.05..-20.47 [-34.7450..-27.8260] | it/evals=1020/1757 eff=70.0069% N=300 Z=-32.7(0.10%) | Like=-27.43..-20.47 [-27.8217..-26.9374] | it/evals=1050/1797 eff=70.1403% N=300 Mono-modal Volume: ~exp(-7.37) * Expected Volume: exp(-3.57) Quality: ok index : +1.0| +2.2 ************ +3.1 | +5.0 amplitude: +1.0e-12| ************** +4.9e-11 | +1.0e-10 Z=-32.3(0.16%) | Like=-27.07..-20.47 [-27.8217..-26.9374] | it/evals=1072/1832 eff=69.9739% N=300 Z=-32.2(0.18%) | Like=-26.85..-20.47 [-26.9209..-26.7991] | it/evals=1080/1843 eff=69.9935% N=300 Z=-31.7(0.31%) | Like=-26.24..-20.47 [-26.2745..-26.2446] | it/evals=1107/1883 eff=69.9305% N=300 Z=-31.6(0.33%) | Like=-26.15..-20.47 [-26.1500..-26.1348] | it/evals=1110/1886 eff=69.9874% N=300 Z=-31.1(0.53%) | Like=-25.71..-20.47 [-25.7096..-25.6921] | it/evals=1137/1925 eff=69.9692% N=300 Mono-modal Volume: ~exp(-7.37) Expected Volume: exp(-3.80) Quality: ok index : +1.0| +2.2 *********** +3.0 | +5.0 amplitude: +1.0e-12| ************* +4.8e-11 | +1.0e-10 Z=-31.1(0.55%) | Like=-25.69..-20.47 [-25.6864..-25.6837]*| it/evals=1140/1929 eff=69.9816% N=300 Z=-30.7(0.82%) | Like=-25.26..-20.47 [-25.2750..-25.2647] | it/evals=1164/1969 eff=69.7424% N=300 Z=-30.6(0.88%) | Like=-25.18..-20.47 [-25.2018..-25.1821] | it/evals=1170/1980 eff=69.6429% N=300 Z=-30.2(1.25%) | Like=-24.81..-20.47 [-24.8100..-24.7928] | it/evals=1195/2023 eff=69.3558% N=300 Z=-30.2(1.32%) | Like=-24.73..-20.47 [-24.7417..-24.7254] | it/evals=1200/2032 eff=69.2841% N=300 Mono-modal Volume: ~exp(-8.25) * Expected Volume: exp(-4.02) Quality: ok index : +1.0| +2.2 ********** +2.9 | +5.0 amplitude: +1.0e-12| +2.4e-11 *********** +4.6e-11 | +1.0e-10 Z=-30.1(1.44%) | Like=-24.70..-20.47 [-24.7084..-24.6974] | it/evals=1206/2041 eff=69.2705% N=300 Z=-29.8(1.98%) | Like=-24.36..-20.47 [-24.4037..-24.3579] | it/evals=1230/2066 eff=69.6489% N=300 Z=-29.4(2.76%) | Like=-24.02..-20.47 [-24.0171..-24.0116]*| it/evals=1260/2105 eff=69.8061% N=300 Mono-modal Volume: ~exp(-8.25) Expected Volume: exp(-4.24) Quality: ok index : +1.0| +2.3 ******** +2.9 | +5.0 amplitude: +1.0e-12| +2.5e-11 *********** +4.5e-11 | +1.0e-10 Z=-29.2(3.67%) | Like=-23.74..-20.47 [-23.7351..-23.7178] | it/evals=1286/2142 eff=69.8154% N=300 Z=-29.1(3.84%) | Like=-23.69..-20.47 [-23.7042..-23.6934] | it/evals=1290/2146 eff=69.8808% N=300 Z=-28.9(4.84%) | Like=-23.41..-20.47 [-23.4064..-23.4061]*| it/evals=1314/2186 eff=69.6713% N=300 Z=-28.8(5.15%) | Like=-23.37..-20.47 [-23.3684..-23.3473] | it/evals=1320/2193 eff=69.7306% N=300 Mono-modal Volume: ~exp(-8.30) * Expected Volume: exp(-4.47) Quality: ok index : +1.0| +2.3 ******** +2.9 | +5.0 amplitude: +1.0e-12| +2.6e-11 ********* +4.3e-11 | +1.0e-10 Z=-28.6(6.19%) | Like=-23.11..-20.47 [-23.1251..-23.1086] | it/evals=1340/2221 eff=69.7553% N=300 Z=-28.5(6.87%) | Like=-23.02..-20.47 [-23.0249..-23.0222]*| it/evals=1350/2233 eff=69.8396% N=300 Z=-28.3(9.10%) | Like=-22.80..-20.47 [-22.8011..-22.7963]*| it/evals=1380/2271 eff=70.0152% N=300 Mono-modal Volume: ~exp(-8.30) Expected Volume: exp(-4.69) Quality: ok index : +1.0| +2.3 ******** +2.8 | +5.0 amplitude: +1.0e-12| +2.7e-11 ********* +4.2e-11 | +1.0e-10 Z=-28.1(11.06%) | Like=-22.64..-20.47 [-22.6375..-22.6305]*| it/evals=1407/2309 eff=70.0348% N=300 Z=-28.1(11.31%) | Like=-22.63..-20.47 [-22.6282..-22.6237]*| it/evals=1410/2313 eff=70.0447% N=300 Z=-27.9(13.64%) | Like=-22.37..-20.47 [-22.3749..-22.3726]*| it/evals=1438/2355 eff=69.9757% N=300 Z=-27.9(13.86%) | Like=-22.36..-20.47 [-22.3630..-22.3600]*| it/evals=1440/2358 eff=69.9708% N=300 Z=-27.7(16.46%) | Like=-22.18..-20.47 [-22.1841..-22.1765]*| it/evals=1466/2397 eff=69.9094% N=300 Z=-27.7(16.89%) | Like=-22.16..-20.47 [-22.1612..-22.1318] | it/evals=1470/2405 eff=69.8337% N=300 Mono-modal Volume: ~exp(-8.47) * Expected Volume: exp(-4.91) Quality: ok index : +1.0| +2.3 ****** +2.8 | +5.0 amplitude: +1.0e-12| +2.8e-11 ******** +4.1e-11 | +1.0e-10 Z=-27.6(17.38%) | Like=-22.10..-20.47 [-22.1014..-22.0852] | it/evals=1474/2409 eff=69.8909% N=300 Z=-27.5(20.22%) | Like=-21.94..-20.47 [-21.9372..-21.9233] | it/evals=1500/2444 eff=69.9627% N=300 Z=-27.3(23.37%) | Like=-21.81..-20.47 [-21.8090..-21.8052]*| it/evals=1526/2483 eff=69.9038% N=300 Z=-27.3(23.77%) | Like=-21.80..-20.46 [-21.8019..-21.8005]*| it/evals=1530/2490 eff=69.8630% N=300 Mono-modal Volume: ~exp(-9.08) * Expected Volume: exp(-5.14) Quality: ok index : +1.0| +2.4 ****** +2.8 | +5.0 amplitude: +1.0e-12| +2.8e-11 ******* +4.1e-11 | +1.0e-10 Z=-27.3(25.11%) | Like=-21.75..-20.46 [-21.7496..-21.7478]*| it/evals=1541/2504 eff=69.9183% N=300 Z=-27.2(27.46%) | Like=-21.65..-20.46 [-21.6641..-21.6508] | it/evals=1560/2526 eff=70.0809% N=300 Z=-27.1(30.72%) | Like=-21.50..-20.46 [-21.5131..-21.4988] | it/evals=1585/2566 eff=69.9470% N=300 Z=-27.0(31.35%) | Like=-21.49..-20.46 [-21.4854..-21.4850]*| it/evals=1590/2571 eff=70.0132% N=300 Mono-modal Volume: ~exp(-9.75) * Expected Volume: exp(-5.36) Quality: ok index : +1.0| +2.4 ***** +2.7 | +5.0 amplitude: +1.0e-12| +2.9e-11 ****** +4.0e-11 | +1.0e-10 Z=-27.0(33.81%) | Like=-21.43..-20.46 [-21.4347..-21.4327]*| it/evals=1608/2597 eff=70.0044% N=300 Z=-26.9(35.44%) | Like=-21.39..-20.46 [-21.3941..-21.3926]*| it/evals=1620/2610 eff=70.1299% N=300 Z=-26.8(39.03%) | Like=-21.30..-20.46 [-21.3033..-21.3025]*| it/evals=1649/2648 eff=70.2300% N=300 Z=-26.8(39.13%) | Like=-21.30..-20.46 [-21.3025..-21.2990]*| it/evals=1650/2650 eff=70.2128% N=300 Mono-modal Volume: ~exp(-9.87) * Expected Volume: exp(-5.58) Quality: ok index : +1.0| +2.4 ***** +2.7 | +5.0 amplitude: +1.0e-12| +3.0e-11 ****** +3.9e-11 | +1.0e-10 Z=-26.7(42.38%) | Like=-21.22..-20.46 [-21.2216..-21.2189]*| it/evals=1675/2679 eff=70.4077% N=300 Z=-26.7(42.96%) | Like=-21.20..-20.46 [-21.2033..-21.2026]*| it/evals=1680/2685 eff=70.4403% N=300 Z=-26.6(46.56%) | Like=-21.15..-20.46 [-21.1480..-21.1472]*| it/evals=1710/2720 eff=70.6612% N=300 Z=-26.6(50.00%) | Like=-21.10..-20.46 [-21.1046..-21.1038]*| it/evals=1738/2761 eff=70.6217% N=300 Z=-26.6(50.24%) | Like=-21.10..-20.46 [-21.1022..-21.0995]*| it/evals=1740/2764 eff=70.6169% N=300 Mono-modal Volume: ~exp(-9.91) * Expected Volume: exp(-5.81) Quality: ok index : +1.0| +2.4 **** +2.7 | +5.0 amplitude: +1.0e-12| +3.0e-11 ***** +3.9e-11 | +1.0e-10 Z=-26.6(50.47%) | Like=-21.10..-20.46 [-21.0992..-21.0977]*| it/evals=1742/2766 eff=70.6407% N=300 Z=-26.5(53.57%) | Like=-21.03..-20.46 [-21.0345..-21.0334]*| it/evals=1770/2806 eff=70.6305% N=300 Z=-26.4(56.86%) | Like=-20.97..-20.46 [-20.9726..-20.9721]*| it/evals=1799/2847 eff=70.6321% N=300 Z=-26.4(56.98%) | Like=-20.97..-20.46 [-20.9721..-20.9715]*| it/evals=1800/2849 eff=70.6159% N=300 Mono-modal Volume: ~exp(-9.91) Expected Volume: exp(-6.03) Quality: ok index : +1.0| +2.4 **** +2.7 | +5.0 amplitude: +1.0e-12| +3.0e-11 **** +3.8e-11 | +1.0e-10 Z=-26.4(59.48%) | Like=-20.93..-20.46 [-20.9324..-20.9324]*| it/evals=1824/2886 eff=70.5336% N=300 Z=-26.4(60.11%) | Like=-20.93..-20.46 [-20.9281..-20.9244]*| it/evals=1830/2897 eff=70.4659% N=300 Z=-26.3(62.43%) | Like=-20.90..-20.46 [-20.8972..-20.8951]*| it/evals=1854/2937 eff=70.3072% N=300 Z=-26.3(63.00%) | Like=-20.89..-20.46 [-20.8889..-20.8885]*| it/evals=1860/2945 eff=70.3214% N=300 Mono-modal Volume: ~exp(-9.99) * Expected Volume: exp(-6.25) Quality: ok index : +1.0| +2.5 **** +2.7 | +5.0 amplitude: +1.0e-12| +3.1e-11 **** +3.8e-11 | +1.0e-10 Z=-26.3(64.62%) | Like=-20.86..-20.46 [-20.8566..-20.8532]*| it/evals=1876/2969 eff=70.2885% N=300 Z=-26.3(65.90%) | Like=-20.84..-20.46 [-20.8385..-20.8370]*| it/evals=1890/2988 eff=70.3125% N=300 Z=-26.2(68.24%) | Like=-20.81..-20.46 [-20.8062..-20.8055]*| it/evals=1916/3027 eff=70.2604% N=300 Z=-26.2(68.60%) | Like=-20.80..-20.46 [-20.8000..-20.7999]*| it/evals=1920/3037 eff=70.1498% N=300 [ultranest] Explored until L=-2e+01 [ultranest] Likelihood function evaluations: 3061 [ultranest] logZ = -25.87 +- 0.1122 [ultranest] Effective samples strategy satisfied (ESS = 973.5, need >400) [ultranest] Posterior uncertainty strategy is satisfied (KL: 0.46+-0.07 nat, need <0.50 nat) [ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.28, need <0.5) [ultranest] logZ error budget: single: 0.12 bs:0.11 tail:0.26 total:0.28 required:<0.50 [ultranest] done iterating. logZ = -25.863 +- 0.352 single instance: logZ = -25.863 +- 0.122 bootstrapped : logZ = -25.874 +- 0.234 tail : logZ = +- 0.262 insert order U test : converged: True correlation: inf iterations index : 2.12 │ ▁▁▁▁▁▁▁▂▂▃▄▅▅▆▇▇▆▇▆▅▄▃▃▂▁▁▁▁▁▁▁ ▁ ▁ │3.17 2.57 +- 0.12 amplitude : 0.0000000000216│ ▁ ▁▁▁▁▁▂▂▃▄▅▄▆▆▆▇▇▆▅▅▅▃▃▂▂▂▁▁▁▁▁▁▁ ▁▁ │0.0000000000487 0.0000000000341 +- 0.0000000000037 [ultranest] Sampling 300 live points from prior ... Mono-modal Volume: ~exp(-4.02) * Expected Volume: exp(0.00) Quality: ok index : +1.0|************************************************| +5.0 amplitude: +1.0e-12|************* ************** ********* * **** * | +1.0e-10 Z=-inf(0.00%) | Like=-878.02..-19.96 [-878.0224..-135.7551] | it/evals=0/301 eff=0.0000% N=300 Z=-224.0(0.00%) | Like=-219.31..-19.96 [-878.0224..-135.7551] | it/evals=30/333 eff=90.9091% N=300 Z=-211.7(0.00%) | Like=-207.47..-19.53 [-878.0224..-135.7551] | it/evals=60/364 eff=93.7500% N=300 Mono-modal Volume: ~exp(-4.02) Expected Volume: exp(-0.22) Quality: ok index : +1.0|************************************************| +5.0 amplitude: +1.0e-12|************* ************************** **** * | +1.0e-10 Z=-199.1(0.00%) | Like=-193.83..-19.53 [-878.0224..-135.7551] | it/evals=90/400 eff=90.0000% N=300 Z=-184.8(0.00%) | Like=-178.59..-19.53 [-878.0224..-135.7551] | it/evals=120/435 eff=88.8889% N=300 Mono-modal Volume: ~exp(-4.31) * Expected Volume: exp(-0.45) Quality: ok index : +1.0|************************************************| +5.0 amplitude: +1.0e-12|************* ************** *********** **** * | +1.0e-10 Z=-175.1(0.00%) | Like=-170.20..-19.53 [-878.0224..-135.7551] | it/evals=134/451 eff=88.7417% N=300 Z=-166.9(0.00%) | Like=-162.18..-19.53 [-878.0224..-135.7551] | it/evals=150/469 eff=88.7574% N=300 Z=-153.9(0.00%) | Like=-148.35..-19.53 [-878.0224..-135.7551] | it/evals=180/506 eff=87.3786% N=300 Mono-modal Volume: ~exp(-4.64) * Expected Volume: exp(-0.67) Quality: ok index : +1.0| ***********************************************| +5.0 amplitude: +1.0e-12| ************************************* * **** * | +1.0e-10 Z=-144.2(0.00%) | Like=-138.51..-19.53 [-878.0224..-135.7551] | it/evals=201/531 eff=87.0130% N=300 Z=-141.7(0.00%) | Like=-136.96..-19.53 [-878.0224..-135.7551] | it/evals=210/542 eff=86.7769% N=300 Z=-131.5(0.00%) | Like=-126.20..-19.53 [-134.9490..-66.3680] | it/evals=240/580 eff=85.7143% N=300 Mono-modal Volume: ~exp(-4.75) * Expected Volume: exp(-0.89) Quality: ok index : +1.0| *********************************************| +5.0 amplitude: +1.0e-12| ************************************ ******** | +1.0e-10 Z=-120.6(0.00%) | Like=-114.54..-19.17 [-134.9490..-66.3680] | it/evals=268/613 eff=85.6230% N=300 Z=-119.7(0.00%) | Like=-114.19..-19.17 [-134.9490..-66.3680] | it/evals=270/615 eff=85.7143% N=300 Z=-109.5(0.00%) | Like=-103.81..-19.17 [-134.9490..-66.3680] | it/evals=300/652 eff=85.2273% N=300 Z=-100.5(0.00%) | Like=-94.49..-19.17 [-134.9490..-66.3680] | it/evals=330/691 eff=84.3990% N=300 Mono-modal Volume: ~exp(-5.03) * Expected Volume: exp(-1.12) Quality: ok index : +1.0| ******************************************| +5.0 amplitude: +1.0e-12| ******************************************* | +1.0e-10 Z=-99.2(0.00%) | Like=-93.43..-19.17 [-134.9490..-66.3680] | it/evals=335/696 eff=84.5960% N=300 Z=-89.4(0.00%) | Like=-83.87..-19.17 [-134.9490..-66.3680] | it/evals=360/727 eff=84.3091% N=300 Z=-82.5(0.00%) | Like=-76.29..-19.17 [-134.9490..-66.3680] | it/evals=390/765 eff=83.8710% N=300 Mono-modal Volume: ~exp(-5.27) * Expected Volume: exp(-1.34) Quality: ok index : +1.0| *****************************************| +5.0 amplitude: +1.0e-12| ***************************************** | +1.0e-10 Z=-78.9(0.00%) | Like=-73.33..-19.17 [-134.9490..-66.3680] | it/evals=402/783 eff=83.2298% N=300 Z=-76.3(0.00%) | Like=-70.75..-19.17 [-134.9490..-66.3680] | it/evals=420/802 eff=83.6653% N=300 Z=-68.5(0.00%) | Like=-62.61..-19.17 [-66.1106..-40.7452] | it/evals=450/840 eff=83.3333% N=300 Mono-modal Volume: ~exp(-5.67) * Expected Volume: exp(-1.56) Quality: ok index : +1.0| ***************************************| +5.0 amplitude: +1.0e-12| *************************************** | +1.0e-10 Z=-64.5(0.00%) | Like=-58.76..-19.17 [-66.1106..-40.7452] | it/evals=469/868 eff=82.5704% N=300 Z=-62.5(0.00%) | Like=-57.01..-19.17 [-66.1106..-40.7452] | it/evals=480/883 eff=82.3328% N=300 Z=-58.0(0.00%) | Like=-52.68..-19.17 [-66.1106..-40.7452] | it/evals=510/921 eff=82.1256% N=300 Z=-55.6(0.00%) | Like=-50.50..-19.17 [-66.1106..-40.7452] | it/evals=535/961 eff=80.9380% N=300 Mono-modal Volume: ~exp(-5.96) * Expected Volume: exp(-1.79) Quality: ok index : +1.0| ************************************ | +5.0 amplitude: +1.0e-12| ***************************************| +1.0e-10 Z=-55.5(0.00%) | Like=-50.33..-19.17 [-66.1106..-40.7452] | it/evals=536/962 eff=80.9668% N=300 Z=-55.1(0.00%) | Like=-49.75..-19.17 [-66.1106..-40.7452] | it/evals=540/966 eff=81.0811% N=300 Z=-52.0(0.00%) | Like=-46.39..-19.17 [-66.1106..-40.7452] | it/evals=570/1000 eff=81.4286% N=300 Z=-49.3(0.00%) | Like=-43.82..-19.17 [-66.1106..-40.7452] | it/evals=599/1039 eff=81.0555% N=300 Z=-49.2(0.00%) | Like=-43.81..-19.17 [-66.1106..-40.7452] | it/evals=600/1040 eff=81.0811% N=300 Mono-modal Volume: ~exp(-5.96) Expected Volume: exp(-2.01) Quality: ok index : +1.0| +2.0 ***************************** | +5.0 amplitude: +1.0e-12| **************************************| +1.0e-10 Z=-47.1(0.00%) | Like=-41.92..-19.17 [-66.1106..-40.7452] | it/evals=624/1078 eff=80.2057% N=300 Z=-46.7(0.00%) | Like=-41.55..-19.17 [-66.1106..-40.7452] | it/evals=630/1084 eff=80.3571% N=300 Z=-45.1(0.00%) | Like=-40.11..-19.17 [-40.7271..-29.9790] | it/evals=656/1124 eff=79.6117% N=300 Z=-44.9(0.00%) | Like=-39.84..-19.17 [-40.7271..-29.9790] | it/evals=660/1131 eff=79.4224% N=300 Mono-modal Volume: ~exp(-6.41) * Expected Volume: exp(-2.23) Quality: ok index : +1.0| +2.0 *************************** | +5.0 amplitude: +1.0e-12| +2.6e-11 ************************************| +1.0e-10 Z=-44.3(0.00%) | Like=-39.09..-19.17 [-40.7271..-29.9790] | it/evals=670/1143 eff=79.4781% N=300 Z=-43.3(0.00%) | Like=-38.15..-19.17 [-40.7271..-29.9790] | it/evals=690/1166 eff=79.6767% N=300 Z=-41.6(0.00%) | Like=-36.27..-19.17 [-40.7271..-29.9790] | it/evals=720/1205 eff=79.5580% N=300 Mono-modal Volume: ~exp(-6.41) Expected Volume: exp(-2.46) Quality: ok index : +1.0| +2.1 ************************ +4.0 | +5.0 amplitude: +1.0e-12| +2.9e-11 ******************************** | +1.0e-10 Z=-40.1(0.00%) | Like=-34.72..-19.17 [-40.7271..-29.9790] | it/evals=749/1241 eff=79.5962% N=300 Z=-40.0(0.00%) | Like=-34.60..-19.17 [-40.7271..-29.9790] | it/evals=750/1243 eff=79.5334% N=300 Z=-38.4(0.00%) | Like=-33.21..-19.17 [-40.7271..-29.9790] | it/evals=778/1283 eff=79.1455% N=300 Z=-38.4(0.00%) | Like=-33.18..-19.17 [-40.7271..-29.9790] | it/evals=780/1285 eff=79.1878% N=300 Mono-modal Volume: ~exp(-6.81) * Expected Volume: exp(-2.68) Quality: ok index : +1.0| +2.1 ********************** +3.9 | +5.0 amplitude: +1.0e-12| +3.0e-11 ***************************** | +1.0e-10 Z=-37.4(0.00%) | Like=-32.33..-19.17 [-40.7271..-29.9790] | it/evals=804/1315 eff=79.2118% N=300 Z=-37.2(0.00%) | Like=-32.11..-19.17 [-40.7271..-29.9790] | it/evals=810/1324 eff=79.1016% N=300 Z=-36.1(0.00%) | Like=-30.84..-19.17 [-40.7271..-29.9790] | it/evals=840/1358 eff=79.3951% N=300 Z=-35.0(0.00%) | Like=-29.75..-19.17 [-29.9629..-26.0645] | it/evals=869/1397 eff=79.2160% N=300 Z=-35.0(0.00%) | Like=-29.71..-19.17 [-29.9629..-26.0645] | it/evals=870/1399 eff=79.1629% N=300 Mono-modal Volume: ~exp(-6.90) * Expected Volume: exp(-2.90) Quality: ok index : +1.0| +2.2 ******************* +3.7 | +5.0 amplitude: +1.0e-12| +3.2e-11 ************************** | +1.0e-10 Z=-34.9(0.00%) | Like=-29.71..-19.17 [-29.9629..-26.0645] | it/evals=871/1401 eff=79.1099% N=300 Z=-34.0(0.01%) | Like=-28.66..-19.17 [-29.9629..-26.0645] | it/evals=900/1437 eff=79.1557% N=300 Z=-33.2(0.02%) | Like=-28.04..-19.17 [-29.9629..-26.0645] | it/evals=928/1476 eff=78.9116% N=300 Z=-33.1(0.02%) | Like=-27.99..-19.17 [-29.9629..-26.0645] | it/evals=930/1479 eff=78.8804% N=300 Mono-modal Volume: ~exp(-6.90) Expected Volume: exp(-3.13) Quality: ok index : +1.0| +2.2 ****************** +3.6 | +5.0 amplitude: +1.0e-12| +3.5e-11 ************************ | +1.0e-10 Z=-32.5(0.03%) | Like=-27.22..-19.17 [-29.9629..-26.0645] | it/evals=958/1514 eff=78.9127% N=300 Z=-32.4(0.03%) | Like=-27.16..-19.17 [-29.9629..-26.0645] | it/evals=960/1518 eff=78.8177% N=300 Z=-31.6(0.07%) | Like=-26.27..-19.17 [-29.9629..-26.0645] | it/evals=990/1557 eff=78.7589% N=300 Mono-modal Volume: ~exp(-7.63) * Expected Volume: exp(-3.35) Quality: ok index : +1.0| +2.3 *************** +3.5 | +5.0 amplitude: +1.0e-12| +3.6e-11 ********************* +7.9e-11| +1.0e-10 Z=-31.2(0.11%) | Like=-25.74..-19.16 [-26.0579..-25.5823] | it/evals=1005/1573 eff=78.9474% N=300 Z=-30.8(0.16%) | Like=-25.50..-19.16 [-25.4986..-25.4925]*| it/evals=1020/1590 eff=79.0698% N=300 Z=-30.2(0.29%) | Like=-24.94..-19.16 [-24.9402..-24.9299] | it/evals=1050/1624 eff=79.3051% N=300 Mono-modal Volume: ~exp(-7.84) * Expected Volume: exp(-3.57) Quality: ok index : +1.0| +2.4 ************* +3.4 | +5.0 amplitude: +1.0e-12| +3.8e-11 ******************** +7.6e-11 | +1.0e-10 Z=-29.8(0.43%) | Like=-24.58..-19.16 [-24.6027..-24.5849] | it/evals=1072/1651 eff=79.3486% N=300 Z=-29.7(0.50%) | Like=-24.47..-19.16 [-24.4739..-24.4568] | it/evals=1080/1663 eff=79.2370% N=300 Z=-29.3(0.78%) | Like=-23.97..-19.16 [-23.9949..-23.9653] | it/evals=1106/1702 eff=78.8873% N=300 Z=-29.2(0.84%) | Like=-23.89..-19.16 [-23.8937..-23.8543] | it/evals=1110/1706 eff=78.9474% N=300 Mono-modal Volume: ~exp(-7.84) Expected Volume: exp(-3.80) Quality: ok index : +1.0| +2.4 ************* +3.4 | +5.0 amplitude: +1.0e-12| +3.9e-11 ****************** +7.4e-11 | +1.0e-10 Z=-28.7(1.29%) | Like=-23.55..-19.16 [-23.5585..-23.5471] | it/evals=1139/1742 eff=78.9875% N=300 Z=-28.7(1.32%) | Like=-23.54..-19.16 [-23.5381..-23.5250] | it/evals=1140/1743 eff=79.0021% N=300 Z=-28.4(1.89%) | Like=-23.13..-19.16 [-23.1326..-23.1292]*| it/evals=1168/1782 eff=78.8124% N=300 Z=-28.3(1.93%) | Like=-23.13..-19.16 [-23.1262..-23.1079] | it/evals=1170/1785 eff=78.7879% N=300 Z=-28.0(2.57%) | Like=-22.84..-19.16 [-22.8384..-22.8379]*| it/evals=1195/1825 eff=78.3607% N=300 Z=-28.0(2.72%) | Like=-22.76..-19.16 [-22.7606..-22.7566]*| it/evals=1200/1830 eff=78.4314% N=300 Mono-modal Volume: ~exp(-7.84) Expected Volume: exp(-4.02) Quality: ok index : +1.0| +2.4 *********** +3.3 | +5.0 amplitude: +1.0e-12| +4.1e-11 *************** +7.0e-11 | +1.0e-10 Z=-27.7(3.60%) | Like=-22.37..-19.16 [-22.3703..-22.3364] | it/evals=1226/1865 eff=78.3387% N=300 Z=-27.7(3.78%) | Like=-22.28..-19.16 [-22.2850..-22.2716] | it/evals=1230/1871 eff=78.2941% N=300 Z=-27.3(5.21%) | Like=-21.96..-19.16 [-21.9581..-21.9577]*| it/evals=1257/1910 eff=78.0745% N=300 Z=-27.3(5.41%) | Like=-21.88..-19.16 [-21.8843..-21.8653] | it/evals=1260/1914 eff=78.0669% N=300 Mono-modal Volume: ~exp(-8.26) * Expected Volume: exp(-4.24) Quality: ok index : +1.0| +2.5 ********** +3.2 | +5.0 amplitude: +1.0e-12| +4.3e-11 ************** +6.9e-11 | +1.0e-10 Z=-27.2(6.31%) | Like=-21.75..-19.16 [-21.7497..-21.7480]*| it/evals=1273/1930 eff=78.0982% N=300 Z=-27.0(7.38%) | Like=-21.63..-19.16 [-21.6253..-21.6199]*| it/evals=1290/1953 eff=78.0399% N=300 Z=-26.7(9.38%) | Like=-21.39..-19.16 [-21.3900..-21.3851]*| it/evals=1316/1992 eff=77.7778% N=300 Z=-26.7(9.68%) | Like=-21.36..-19.16 [-21.3641..-21.3558]*| it/evals=1320/2000 eff=77.6471% N=300 Mono-modal Volume: ~exp(-8.61) * Expected Volume: exp(-4.47) Quality: ok index : +1.0| +2.5 ******** +3.2 | +5.0 amplitude: +1.0e-12| +4.4e-11 ************* +6.8e-11 | +1.0e-10 Z=-26.5(11.36%) | Like=-21.23..-19.16 [-21.2265..-21.2233]*| it/evals=1340/2028 eff=77.5463% N=300 Z=-26.5(12.23%) | Like=-21.17..-19.16 [-21.1716..-21.1660]*| it/evals=1350/2042 eff=77.4971% N=300 Z=-26.3(14.61%) | Like=-20.97..-19.16 [-20.9719..-20.9678]*| it/evals=1376/2081 eff=77.2600% N=300 Z=-26.3(14.97%) | Like=-20.94..-19.16 [-20.9358..-20.9344]*| it/evals=1380/2086 eff=77.2676% N=300 Z=-26.1(17.65%) | Like=-20.78..-19.16 [-20.7781..-20.7659] | it/evals=1405/2125 eff=76.9863% N=300 Mono-modal Volume: ~exp(-9.15) * Expected Volume: exp(-4.69) Quality: ok index : +1.0| +2.6 ******** +3.1 | +5.0 amplitude: +1.0e-12| +4.5e-11 *********** +6.6e-11 | +1.0e-10 Z=-26.1(17.89%) | Like=-20.76..-19.16 [-20.7622..-20.7518] | it/evals=1407/2127 eff=77.0115% N=300 Z=-26.1(18.25%) | Like=-20.75..-19.16 [-20.7485..-20.7481]*| it/evals=1410/2130 eff=77.0492% N=300 Z=-25.9(21.68%) | Like=-20.56..-19.16 [-20.5572..-20.5560]*| it/evals=1440/2169 eff=77.0465% N=300 Z=-25.8(24.67%) | Like=-20.45..-19.16 [-20.4511..-20.4440]*| it/evals=1464/2209 eff=76.6894% N=300 Z=-25.7(25.33%) | Like=-20.43..-19.16 [-20.4339..-20.4297]*| it/evals=1470/2216 eff=76.7223% N=300 Mono-modal Volume: ~exp(-9.15) Expected Volume: exp(-4.91) Quality: ok index : +1.0| +2.6 ******* +3.1 | +5.0 amplitude: +1.0e-12| +4.6e-11 ********* +6.5e-11 | +1.0e-10 Z=-25.6(28.23%) | Like=-20.34..-19.16 [-20.3448..-20.3410]*| it/evals=1494/2251 eff=76.5761% N=300 Z=-25.6(28.92%) | Like=-20.33..-19.16 [-20.3255..-20.3246]*| it/evals=1500/2257 eff=76.6479% N=300 Z=-25.5(32.23%) | Like=-20.22..-19.16 [-20.2189..-20.2165]*| it/evals=1526/2296 eff=76.4529% N=300 Z=-25.5(32.74%) | Like=-20.20..-19.16 [-20.2027..-20.1993]*| it/evals=1530/2301 eff=76.4618% N=300 Mono-modal Volume: ~exp(-9.16) * Expected Volume: exp(-5.14) Quality: ok index : +1.0| +2.6 ****** +3.0 | +5.0 amplitude: +1.0e-12| +4.7e-11 ********* +6.4e-11 | +1.0e-10 Z=-25.4(34.09%) | Like=-20.16..-19.16 [-20.1644..-20.1638]*| it/evals=1541/2324 eff=76.1364% N=300 Z=-25.4(36.39%) | Like=-20.10..-19.16 [-20.0987..-20.0986]*| it/evals=1560/2349 eff=76.1347% N=300 Z=-25.3(40.10%) | Like=-19.99..-19.16 [-19.9896..-19.9888]*| it/evals=1589/2387 eff=76.1380% N=300 Z=-25.3(40.25%) | Like=-19.99..-19.16 [-19.9888..-19.9886]*| it/evals=1590/2388 eff=76.1494% N=300 Mono-modal Volume: ~exp(-9.69) * Expected Volume: exp(-5.36) Quality: ok index : +1.0| +2.6 ****** +3.0 | +5.0 amplitude: +1.0e-12| +4.8e-11 ******** +6.3e-11 | +1.0e-10 Z=-25.2(42.46%) | Like=-19.95..-19.16 [-19.9497..-19.9492]*| it/evals=1608/2417 eff=75.9565% N=300 Z=-25.2(44.02%) | Like=-19.92..-19.16 [-19.9221..-19.9190]*| it/evals=1620/2434 eff=75.9138% N=300 Z=-25.1(47.55%) | Like=-19.85..-19.16 [-19.8528..-19.8511]*| it/evals=1648/2473 eff=75.8399% N=300 Z=-25.1(47.80%) | Like=-19.85..-19.16 [-19.8498..-19.8457]*| it/evals=1650/2476 eff=75.8272% N=300 Mono-modal Volume: ~exp(-9.69) Expected Volume: exp(-5.58) Quality: ok index : +1.0| +2.6 ****** +3.0 | +5.0 amplitude: +1.0e-12| +4.9e-11 ******* +6.2e-11 | +1.0e-10 Z=-25.0(50.81%) | Like=-19.81..-19.16 [-19.8052..-19.8033]*| it/evals=1675/2512 eff=75.7233% N=300 Z=-25.0(51.40%) | Like=-19.80..-19.16 [-19.7958..-19.7850] | it/evals=1680/2518 eff=75.7439% N=300 Z=-25.0(54.57%) | Like=-19.72..-19.16 [-19.7229..-19.7225]*| it/evals=1707/2557 eff=75.6314% N=300 Z=-24.9(54.94%) | Like=-19.72..-19.16 [-19.7201..-19.7186]*| it/evals=1710/2561 eff=75.6303% N=300 Z=-24.9(57.77%) | Like=-19.69..-19.16 [-19.6872..-19.6863]*| it/evals=1736/2601 eff=75.4455% N=300 Z=-24.9(58.17%) | Like=-19.68..-19.16 [-19.6825..-19.6817]*| it/evals=1740/2606 eff=75.4553% N=300 Mono-modal Volume: ~exp(-9.94) * Expected Volume: exp(-5.81) Quality: ok index : +1.0| +2.6 ***** +3.0 | +5.0 amplitude: +1.0e-12| +4.9e-11 ******* +6.1e-11 | +1.0e-10 Z=-24.9(58.36%) | Like=-19.68..-19.16 [-19.6802..-19.6790]*| it/evals=1742/2609 eff=75.4439% N=300 Z=-24.8(61.26%) | Like=-19.63..-19.16 [-19.6346..-19.6332]*| it/evals=1770/2641 eff=75.6087% N=300 Z=-24.8(64.19%) | Like=-19.59..-19.16 [-19.5938..-19.5884]*| it/evals=1800/2677 eff=75.7257% N=300 Mono-modal Volume: ~exp(-10.25) * Expected Volume: exp(-6.03) Quality: ok index : +1.0| +2.7 ***** +3.0 | +5.0 amplitude: +1.0e-12| +5.0e-11 ****** +6.1e-11 | +1.0e-10 Z=-24.8(65.01%) | Like=-19.58..-19.16 [-19.5783..-19.5745]*| it/evals=1809/2690 eff=75.6904% N=300 Z=-24.7(66.94%) | Like=-19.55..-19.16 [-19.5470..-19.5470]*| it/evals=1830/2713 eff=75.8392% N=300 Z=-24.7(69.57%) | Like=-19.51..-19.16 [-19.5098..-19.5091]*| it/evals=1860/2749 eff=75.9494% N=300 [ultranest] Explored until L=-2e+01 [ultranest] Likelihood function evaluations: 2755 [ultranest] logZ = -24.36 +- 0.07651 [ultranest] Effective samples strategy satisfied (ESS = 966.8, need >400) [ultranest] Posterior uncertainty strategy is satisfied (KL: 0.45+-0.08 nat, need <0.50 nat) [ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.27, need <0.5) [ultranest] logZ error budget: single: 0.12 bs:0.08 tail:0.26 total:0.27 required:<0.50 [ultranest] done iterating. logZ = -24.343 +- 0.283 single instance: logZ = -24.343 +- 0.119 bootstrapped : logZ = -24.356 +- 0.108 tail : logZ = +- 0.262 insert order U test : converged: True correlation: inf iterations index : 2.33 │ ▁▁▁▁▁▁▂▄▄▄▇▇▆▇▇▇▅▆▅▅▃▃▂▂▂▁▁▁▁▁▁▁▁ ▁ │3.57 2.83 +- 0.16 amplitude : 0.0000000000353│ ▁▁▁▁▁▁▂▂▃▄▄▆▆▇▇▅▆▆▅▄▃▃▂▂▂▁▁▁▁▁ ▁▁▁ ▁ │0.0000000000835 0.0000000000551 +- 0.0000000000057 [ultranest] Sampling 300 live points from prior ... Mono-modal Volume: ~exp(-4.10) * Expected Volume: exp(0.00) Quality: ok index : +1.0|************************************************| +5.0 amplitude: +1.0e-12|******************** *** ********* ** **** * ***| +1.0e-10 Z=-inf(0.00%) | Like=-1195.15..-14.38 [-1195.1461..-100.2557] | it/evals=0/301 eff=0.0000% N=300 Z=-155.1(0.00%) | Like=-150.99..-13.67 [-1195.1461..-100.2557] | it/evals=30/331 eff=96.7742% N=300 Z=-146.8(0.00%) | Like=-142.12..-13.67 [-1195.1461..-100.2557] | it/evals=60/363 eff=95.2381% N=300 Mono-modal Volume: ~exp(-4.43) * Expected Volume: exp(-0.22) Quality: ok index : +1.0|************************************************| +5.0 amplitude: +1.0e-12|******************** *** ************ **** * ***| +1.0e-10 Z=-144.9(0.00%) | Like=-140.32..-13.67 [-1195.1461..-100.2557] | it/evals=67/372 eff=93.0556% N=300 Z=-138.5(0.00%) | Like=-133.83..-13.67 [-1195.1461..-100.2557] | it/evals=90/397 eff=92.7835% N=300 Z=-130.2(0.00%) | Like=-124.46..-13.67 [-1195.1461..-100.2557] | it/evals=120/432 eff=90.9091% N=300 Mono-modal Volume: ~exp(-4.43) Expected Volume: exp(-0.45) Quality: ok index : +1.0|************************************************| +5.0 amplitude: +1.0e-12|************************ ***************** *****| +1.0e-10 Z=-121.0(0.00%) | Like=-115.73..-13.67 [-1195.1461..-100.2557] | it/evals=150/464 eff=91.4634% N=300 Z=-112.8(0.00%) | Like=-107.97..-13.67 [-1195.1461..-100.2557] | it/evals=180/497 eff=91.3706% N=300 Mono-modal Volume: ~exp(-4.93) * Expected Volume: exp(-0.67) Quality: ok index : +1.0| ***********************************************| +5.0 amplitude: +1.0e-12|************************ ***************** *****| +1.0e-10 Z=-106.9(0.00%) | Like=-101.97..-13.67 [-1195.1461..-100.2557] | it/evals=201/522 eff=90.5405% N=300 Z=-104.6(0.00%) | Like=-99.75..-13.67 [-100.2196..-48.4326] | it/evals=210/532 eff=90.5172% N=300 Z=-97.0(0.00%) | Like=-91.67..-13.67 [-100.2196..-48.4326] | it/evals=240/567 eff=89.8876% N=300 Mono-modal Volume: ~exp(-4.93) Expected Volume: exp(-0.89) Quality: ok index : +1.0| *********************************************| +5.0 amplitude: +1.0e-12| ***************************************** *****| +1.0e-10 Z=-91.0(0.00%) | Like=-85.06..-13.67 [-100.2196..-48.4326] | it/evals=269/602 eff=89.0728% N=300 Z=-90.6(0.00%) | Like=-84.81..-13.67 [-100.2196..-48.4326] | it/evals=270/604 eff=88.8158% N=300 Z=-82.9(0.00%) | Like=-77.48..-13.67 [-100.2196..-48.4326] | it/evals=300/639 eff=88.4956% N=300 Z=-74.2(0.00%) | Like=-67.86..-13.67 [-100.2196..-48.4326] | it/evals=330/676 eff=87.7660% N=300 Mono-modal Volume: ~exp(-5.14) * Expected Volume: exp(-1.12) Quality: ok index : +1.0| *******************************************| +5.0 amplitude: +1.0e-12| **************************************** *****| +1.0e-10 Z=-72.6(0.00%) | Like=-67.15..-13.67 [-100.2196..-48.4326] | it/evals=335/681 eff=87.9265% N=300 Z=-67.3(0.00%) | Like=-61.83..-13.67 [-100.2196..-48.4326] | it/evals=360/712 eff=87.3786% N=300 Z=-61.4(0.00%) | Like=-56.06..-13.67 [-100.2196..-48.4326] | it/evals=390/748 eff=87.0536% N=300 Mono-modal Volume: ~exp(-5.31) * Expected Volume: exp(-1.34) Quality: ok index : +1.0| ******************************************| +5.0 amplitude: +1.0e-12| ********************************************| +1.0e-10 Z=-59.5(0.00%) | Like=-54.13..-13.67 [-100.2196..-48.4326] | it/evals=402/764 eff=86.6379% N=300 Z=-56.2(0.00%) | Like=-50.57..-13.46 [-100.2196..-48.4326] | it/evals=420/792 eff=85.3659% N=300 Z=-52.0(0.00%) | Like=-46.92..-13.46 [-48.4268..-31.6589] | it/evals=449/831 eff=84.5574% N=300 Z=-51.9(0.00%) | Like=-46.83..-13.46 [-48.4268..-31.6589] | it/evals=450/832 eff=84.5865% N=300 Mono-modal Volume: ~exp(-5.33) * Expected Volume: exp(-1.56) Quality: ok index : +1.0| ************************************** | +5.0 amplitude: +1.0e-12| *******************************************| +1.0e-10 Z=-49.8(0.00%) | Like=-44.99..-13.46 [-48.4268..-31.6589] | it/evals=469/863 eff=83.3037% N=300 Z=-48.9(0.00%) | Like=-44.00..-13.46 [-48.4268..-31.6589] | it/evals=480/876 eff=83.3333% N=300 Z=-46.7(0.00%) | Like=-41.96..-13.40 [-48.4268..-31.6589] | it/evals=506/916 eff=82.1429% N=300 Z=-46.4(0.00%) | Like=-41.62..-13.40 [-48.4268..-31.6589] | it/evals=510/923 eff=81.8620% N=300 Mono-modal Volume: ~exp(-5.89) * Expected Volume: exp(-1.79) Quality: ok index : +1.0| *********************************** | +5.0 amplitude: +1.0e-12| ******************************************| +1.0e-10 Z=-44.8(0.00%) | Like=-39.94..-13.40 [-48.4268..-31.6589] | it/evals=536/960 eff=81.2121% N=300 Z=-44.5(0.00%) | Like=-39.75..-13.40 [-48.4268..-31.6589] | it/evals=540/965 eff=81.2030% N=300 Z=-42.4(0.00%) | Like=-37.47..-13.40 [-48.4268..-31.6589] | it/evals=568/1004 eff=80.6818% N=300 Z=-42.3(0.00%) | Like=-37.41..-13.40 [-48.4268..-31.6589] | it/evals=570/1006 eff=80.7365% N=300 Z=-40.3(0.00%) | Like=-35.09..-13.40 [-48.4268..-31.6589] | it/evals=599/1047 eff=80.1874% N=300 Z=-40.2(0.00%) | Like=-34.95..-13.40 [-48.4268..-31.6589] | it/evals=600/1048 eff=80.2139% N=300 Mono-modal Volume: ~exp(-6.02) * Expected Volume: exp(-2.01) Quality: ok index : +1.0| ****************************** | +5.0 amplitude: +1.0e-12| ****************************************| +1.0e-10 Z=-40.0(0.00%) | Like=-34.49..-13.40 [-48.4268..-31.6589] | it/evals=603/1053 eff=80.0797% N=300 Z=-38.1(0.00%) | Like=-33.18..-13.40 [-48.4268..-31.6589] | it/evals=630/1090 eff=79.7468% N=300 Z=-36.6(0.00%) | Like=-31.77..-13.40 [-48.4268..-31.6589] | it/evals=656/1130 eff=79.0361% N=300 Z=-36.4(0.00%) | Like=-31.64..-13.40 [-31.6407..-22.3764] | it/evals=660/1135 eff=79.0419% N=300 Mono-modal Volume: ~exp(-6.02) Expected Volume: exp(-2.23) Quality: ok index : +1.0| +1.9 *************************** +4.1 | +5.0 amplitude: +1.0e-12| ****************************************| +1.0e-10 Z=-35.0(0.00%) | Like=-29.86..-13.40 [-31.6407..-22.3764] | it/evals=688/1171 eff=78.9897% N=300 Z=-34.9(0.00%) | Like=-29.81..-13.40 [-31.6407..-22.3764] | it/evals=690/1175 eff=78.8571% N=300 Z=-33.4(0.00%) | Like=-28.37..-13.40 [-31.6407..-22.3764] | it/evals=718/1215 eff=78.4699% N=300 Z=-33.3(0.00%) | Like=-28.20..-13.40 [-31.6407..-22.3764] | it/evals=720/1217 eff=78.5169% N=300 Mono-modal Volume: ~exp(-6.53) * Expected Volume: exp(-2.46) Quality: ok index : +1.0| +2.0 *********************** +3.9 | +5.0 amplitude: +1.0e-12| **************************************| +1.0e-10 Z=-32.5(0.00%) | Like=-27.48..-13.40 [-31.6407..-22.3764] | it/evals=737/1241 eff=78.3209% N=300 Z=-31.9(0.00%) | Like=-26.88..-13.40 [-31.6407..-22.3764] | it/evals=750/1258 eff=78.2881% N=300 Z=-30.7(0.00%) | Like=-25.57..-13.39 [-31.6407..-22.3764] | it/evals=778/1297 eff=78.0341% N=300 Z=-30.6(0.00%) | Like=-25.42..-13.39 [-31.6407..-22.3764] | it/evals=780/1299 eff=78.0781% N=300 Mono-modal Volume: ~exp(-6.53) Expected Volume: exp(-2.68) Quality: ok index : +1.0| +2.0 ********************* +3.7 | +5.0 amplitude: +1.0e-12| +2.5e-11 ********************************** **| +1.0e-10 Z=-29.5(0.00%) | Like=-24.53..-13.39 [-31.6407..-22.3764] | it/evals=810/1335 eff=78.2609% N=300 Z=-28.5(0.00%) | Like=-23.41..-13.39 [-31.6407..-22.3764] | it/evals=840/1374 eff=78.2123% N=300 Z=-27.6(0.01%) | Like=-22.51..-13.39 [-31.6407..-22.3764] | it/evals=867/1414 eff=77.8276% N=300 Z=-27.5(0.01%) | Like=-22.48..-13.39 [-31.6407..-22.3764] | it/evals=870/1419 eff=77.7480% N=300 Mono-modal Volume: ~exp(-6.67) * Expected Volume: exp(-2.90) Quality: ok index : +1.0| +2.1 ******************* +3.6 | +5.0 amplitude: +1.0e-12| +2.6e-11 ********************************* | +1.0e-10 Z=-27.5(0.01%) | Like=-22.47..-13.39 [-31.6407..-22.3764] | it/evals=871/1421 eff=77.6985% N=300 Z=-26.9(0.02%) | Like=-21.90..-13.39 [-22.3257..-20.1270] | it/evals=897/1462 eff=77.1945% N=300 Z=-26.8(0.03%) | Like=-21.81..-13.39 [-22.3257..-20.1270] | it/evals=900/1466 eff=77.1870% N=300 Z=-26.2(0.05%) | Like=-21.17..-13.39 [-22.3257..-20.1270] | it/evals=929/1505 eff=77.0954% N=300 Z=-26.1(0.05%) | Like=-21.17..-13.39 [-22.3257..-20.1270] | it/evals=930/1509 eff=76.9231% N=300 Mono-modal Volume: ~exp(-6.69) * Expected Volume: exp(-3.13) Quality: ok index : +1.0| +2.2 **************** +3.5 | +5.0 amplitude: +1.0e-12| +2.9e-11 ****************************** | +1.0e-10 Z=-26.0(0.06%) | Like=-20.98..-13.39 [-22.3257..-20.1270] | it/evals=938/1518 eff=77.0115% N=300 Z=-25.5(0.10%) | Like=-20.51..-13.39 [-22.3257..-20.1270] | it/evals=960/1548 eff=76.9231% N=300 Z=-25.0(0.17%) | Like=-20.01..-13.39 [-20.1218..-19.8519] | it/evals=986/1588 eff=76.5528% N=300 Z=-24.9(0.18%) | Like=-19.95..-13.39 [-20.1218..-19.8519] | it/evals=990/1593 eff=76.5661% N=300 Mono-modal Volume: ~exp(-7.26) * Expected Volume: exp(-3.35) Quality: ok index : +1.0| +2.2 *************** +3.4 | +5.0 amplitude: +1.0e-12| +3.0e-11 *************************** | +1.0e-10 Z=-24.7(0.24%) | Like=-19.55..-13.39 [-19.5519..-19.5413] | it/evals=1005/1618 eff=76.2519% N=300 Z=-24.4(0.33%) | Like=-19.18..-13.35 [-19.1823..-19.1337] | it/evals=1020/1636 eff=76.3473% N=300 Z=-23.8(0.56%) | Like=-18.73..-13.35 [-18.7336..-18.6791] | it/evals=1050/1675 eff=76.3636% N=300 Mono-modal Volume: ~exp(-7.30) * Expected Volume: exp(-3.57) Quality: ok index : +1.0| +2.3 ************* +3.3 | +5.0 amplitude: +1.0e-12| +3.3e-11 ************************ | +1.0e-10 Z=-23.5(0.80%) | Like=-18.31..-13.35 [-18.3085..-18.3032]*| it/evals=1072/1704 eff=76.3533% N=300 Z=-23.3(0.91%) | Like=-18.17..-13.35 [-18.1651..-18.1560]*| it/evals=1080/1715 eff=76.3251% N=300 Z=-22.9(1.46%) | Like=-17.68..-13.35 [-17.6765..-17.6611] | it/evals=1110/1750 eff=76.5517% N=300 Z=-22.5(2.13%) | Like=-17.32..-13.35 [-17.3226..-17.3039] | it/evals=1136/1789 eff=76.2928% N=300 Mono-modal Volume: ~exp(-7.74) * Expected Volume: exp(-3.80) Quality: ok index : +1.0| +2.3 ************ +3.2 | +5.0 amplitude: +1.0e-12| +3.5e-11 ********************** +7.8e-11| +1.0e-10 Z=-22.5(2.23%) | Like=-17.30..-13.35 [-17.3005..-17.2763] | it/evals=1139/1792 eff=76.3405% N=300 Z=-22.5(2.26%) | Like=-17.28..-13.35 [-17.3005..-17.2763] | it/evals=1140/1793 eff=76.3563% N=300 Z=-22.1(3.01%) | Like=-17.00..-13.31 [-17.0048..-16.9891] | it/evals=1167/1830 eff=76.2745% N=300 Z=-22.1(3.12%) | Like=-16.91..-13.31 [-16.9751..-16.9074] | it/evals=1170/1833 eff=76.3209% N=300 Z=-21.8(4.04%) | Like=-16.70..-13.31 [-16.7209..-16.7046] | it/evals=1192/1872 eff=75.8270% N=300 Z=-21.8(4.36%) | Like=-16.65..-13.31 [-16.6672..-16.6461] | it/evals=1200/1881 eff=75.9013% N=300 Mono-modal Volume: ~exp(-7.83) * Expected Volume: exp(-4.02) Quality: ok index : +1.0| +2.3 *********** +3.2 | +5.0 amplitude: +1.0e-12| +3.6e-11 ******************** +7.5e-11 | +1.0e-10 Z=-21.7(4.65%) | Like=-16.59..-13.31 [-16.5892..-16.5701] | it/evals=1206/1890 eff=75.8491% N=300 Z=-21.5(5.81%) | Like=-16.41..-13.31 [-16.4253..-16.4103] | it/evals=1230/1917 eff=76.0668% N=300 Z=-21.2(7.27%) | Like=-16.19..-13.31 [-16.1854..-16.1807]*| it/evals=1257/1956 eff=75.9058% N=300 Z=-21.2(7.41%) | Like=-16.18..-13.31 [-16.1790..-16.1693]*| it/evals=1260/1959 eff=75.9494% N=300 Mono-modal Volume: ~exp(-7.83) Expected Volume: exp(-4.24) Quality: ok index : +1.0| +2.4 ********** +3.1 | +5.0 amplitude: +1.0e-12| +3.7e-11 ****************** +7.3e-11 | +1.0e-10 Z=-21.1(8.69%) | Like=-15.95..-13.31 [-15.9532..-15.9416] | it/evals=1282/1995 eff=75.6342% N=300 Z=-21.0(9.28%) | Like=-15.89..-13.31 [-15.9096..-15.8912] | it/evals=1290/2006 eff=75.6155% N=300 Z=-20.8(11.55%) | Like=-15.68..-13.31 [-15.6999..-15.6829] | it/evals=1320/2045 eff=75.6447% N=300 Mono-modal Volume: ~exp(-8.40) * Expected Volume: exp(-4.47) Quality: ok index : +1.0| +2.4 ********** +3.1 | +5.0 amplitude: +1.0e-12| +3.9e-11 **************** +7.1e-11 | +1.0e-10 Z=-20.7(13.19%) | Like=-15.49..-13.31 [-15.4857..-15.4657] | it/evals=1340/2079 eff=75.3232% N=300 Z=-20.6(14.00%) | Like=-15.40..-13.31 [-15.3952..-15.3925]*| it/evals=1350/2089 eff=75.4612% N=300 Z=-20.4(16.72%) | Like=-15.24..-13.31 [-15.2374..-15.2352]*| it/evals=1378/2128 eff=75.3829% N=300 Z=-20.4(16.84%) | Like=-15.23..-13.31 [-15.2283..-15.2253]*| it/evals=1380/2133 eff=75.2864% N=300 Mono-modal Volume: ~exp(-8.40) Expected Volume: exp(-4.69) Quality: ok index : +1.0| +2.4 ******** +3.1 | +5.0 amplitude: +1.0e-12| +4.0e-11 *************** +6.9e-11 | +1.0e-10 Z=-20.2(19.72%) | Like=-15.10..-13.31 [-15.0987..-15.0908]*| it/evals=1407/2170 eff=75.2406% N=300 Z=-20.2(19.93%) | Like=-15.08..-13.31 [-15.0793..-15.0784]*| it/evals=1410/2174 eff=75.2401% N=300 Z=-20.1(23.05%) | Like=-14.91..-13.31 [-14.9116..-14.9078]*| it/evals=1440/2212 eff=75.3138% N=300 Z=-19.9(26.12%) | Like=-14.79..-13.31 [-14.7945..-14.7914]*| it/evals=1470/2249 eff=75.4233% N=300 Mono-modal Volume: ~exp(-8.52) * Expected Volume: exp(-4.91) Quality: ok index : +1.0| +2.5 ******** +3.0 | +5.0 amplitude: +1.0e-12| +4.1e-11 ************** +6.7e-11 | +1.0e-10 Z=-19.9(26.60%) | Like=-14.78..-13.31 [-14.7815..-14.7787]*| it/evals=1474/2253 eff=75.4736% N=300 Z=-19.8(29.45%) | Like=-14.66..-13.31 [-14.6705..-14.6569] | it/evals=1500/2285 eff=75.5668% N=300 Z=-19.7(32.66%) | Like=-14.54..-13.31 [-14.5394..-14.5393]*| it/evals=1528/2324 eff=75.4941% N=300 Z=-19.7(32.88%) | Like=-14.53..-13.31 [-14.5393..-14.5263] | it/evals=1530/2331 eff=75.3323% N=300 Mono-modal Volume: ~exp(-8.85) * Expected Volume: exp(-5.14) Quality: ok index : +1.0| +2.5 ******* +3.0 | +5.0 amplitude: +1.0e-12| +4.2e-11 ************* +6.6e-11 | +1.0e-10 Z=-19.7(34.22%) | Like=-14.50..-13.31 [-14.5009..-14.4998]*| it/evals=1541/2345 eff=75.3545% N=300 Z=-19.6(36.43%) | Like=-14.43..-13.31 [-14.4265..-14.4260]*| it/evals=1560/2366 eff=75.5082% N=300 Z=-19.5(39.76%) | Like=-14.33..-13.31 [-14.3341..-14.3329]*| it/evals=1589/2405 eff=75.4869% N=300 Z=-19.5(39.86%) | Like=-14.33..-13.31 [-14.3329..-14.3289]*| it/evals=1590/2406 eff=75.4986% N=300 Mono-modal Volume: ~exp(-9.01) * Expected Volume: exp(-5.36) Quality: ok index : +1.0| +2.5 ****** +3.0 | +5.0 amplitude: +1.0e-12| +4.3e-11 *********** +6.4e-11 | +1.0e-10 Z=-19.5(42.01%) | Like=-14.29..-13.31 [-14.2880..-14.2870]*| it/evals=1608/2431 eff=75.4575% N=300 Z=-19.4(43.35%) | Like=-14.25..-13.31 [-14.2527..-14.2525]*| it/evals=1620/2447 eff=75.4541% N=300 Z=-19.4(46.65%) | Like=-14.19..-13.31 [-14.1904..-14.1828]*| it/evals=1650/2484 eff=75.5495% N=300 Mono-modal Volume: ~exp(-9.21) * Expected Volume: exp(-5.58) Quality: ok index : +1.0| +2.5 ****** +2.9 | +5.0 amplitude: +1.0e-12| +4.4e-11 *********** +6.3e-11 | +1.0e-10 Z=-19.3(49.63%) | Like=-14.09..-13.31 [-14.0942..-14.0900]*| it/evals=1675/2521 eff=75.4165% N=300 Z=-19.3(50.19%) | Like=-14.09..-13.31 [-14.0883..-14.0865]*| it/evals=1680/2527 eff=75.4378% N=300 Z=-19.2(53.37%) | Like=-14.02..-13.30 [-14.0184..-14.0173]*| it/evals=1710/2565 eff=75.4967% N=300 Z=-19.2(56.21%) | Like=-13.96..-13.30 [-13.9623..-13.9613]*| it/evals=1737/2604 eff=75.3906% N=300 Z=-19.2(56.53%) | Like=-13.96..-13.30 [-13.9595..-13.9548]*| it/evals=1740/2607 eff=75.4226% N=300 Mono-modal Volume: ~exp(-9.75) * Expected Volume: exp(-5.81) Quality: ok index : +1.0| +2.5 ****** +2.9 | +5.0 amplitude: +1.0e-12| +4.5e-11 ********* +6.2e-11 | +1.0e-10 Z=-19.2(56.70%) | Like=-13.95..-13.30 [-13.9538..-13.9538]*| it/evals=1742/2609 eff=75.4439% N=300 Z=-19.1(59.45%) | Like=-13.91..-13.30 [-13.9093..-13.9037]*| it/evals=1770/2642 eff=75.5764% N=300 Z=-19.1(62.37%) | Like=-13.85..-13.30 [-13.8536..-13.8525]*| it/evals=1800/2673 eff=75.8534% N=300 Mono-modal Volume: ~exp(-9.75) Expected Volume: exp(-6.03) Quality: ok index : +1.0| +2.6 ***** +2.9 | +5.0 amplitude: +1.0e-12| +4.5e-11 ********* +6.1e-11 | +1.0e-10 Z=-19.0(64.69%) | Like=-13.81..-13.30 [-13.8121..-13.8118]*| it/evals=1825/2709 eff=75.7576% N=300 Z=-19.0(65.14%) | Like=-13.81..-13.30 [-13.8084..-13.8081]*| it/evals=1830/2716 eff=75.7450% N=300 Z=-19.0(67.52%) | Like=-13.76..-13.30 [-13.7619..-13.7597]*| it/evals=1856/2756 eff=75.5700% N=300 Z=-19.0(67.88%) | Like=-13.76..-13.30 [-13.7568..-13.7567]*| it/evals=1860/2764 eff=75.4870% N=300 Mono-modal Volume: ~exp(-9.75) Expected Volume: exp(-6.25) Quality: ok index : +1.0| +2.6 ***** +2.9 | +5.0 amplitude: +1.0e-12| +4.6e-11 ******** +6.0e-11 | +1.0e-10 Z=-19.0(69.78%) | Like=-13.71..-13.30 [-13.7139..-13.7139]*| it/evals=1883/2800 eff=75.3200% N=300 [ultranest] Explored until L=-1e+01 [ultranest] Likelihood function evaluations: 2802 [ultranest] logZ = -18.59 +- 0.07521 [ultranest] Effective samples strategy satisfied (ESS = 1025.4, need >400) [ultranest] Posterior uncertainty strategy is satisfied (KL: 0.45+-0.11 nat, need <0.50 nat) [ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.27, need <0.5) [ultranest] logZ error budget: single: 0.12 bs:0.08 tail:0.26 total:0.27 required:<0.50 [ultranest] done iterating. logZ = -18.593 +- 0.305 single instance: logZ = -18.593 +- 0.118 bootstrapped : logZ = -18.595 +- 0.155 tail : logZ = +- 0.262 insert order U test : converged: True correlation: inf iterations index : 2.11 │ ▁ ▁▁▁▁▂▃▃▄▅▆▆▇▇▇▆▆▅▄▅▃▂▂▁▁▁▁▁▁ ▁ │3.70 2.76 +- 0.18 amplitude : 0.0000000000260│ ▁▁ ▁▁▁▁▂▃▄▅▅▇▆▇▇▇▇▇▅▄▅▃▂▂▁▁▁▁▁▁▁▁▁▁ ▁ │0.0000000000893 0.0000000000536 +- 0.0000000000081 .. GENERATED FROM PYTHON SOURCE LINES 376-384 Comparing the posterior distribution of all runs ------------------------------------------------ For a comparison of different posterior distributions, we can use the package chainconsumer. As this is not a Gammapy dependency, you’ll need to install it. More info here : https://samreay.github.io/ChainConsumer/ .. GENERATED FROM PYTHON SOURCE LINES 384-410 .. code-block:: Python # Uncomment this if you have installed `chainconsumer`. # from chainconsumer import Chain, ChainConfig, ChainConsumer, PlotConfig, Truth, make_sample # from pandas import DataFrame # c = ChainConsumer() # def create_chain(result, name, color="k"): # return Chain( # samples=DataFrame(result, columns=["index", "amplitude"]), # name=name, # color=color, # smooth=7, # shade=False, # linewidth=1.0, # cmap="magma", # show_contour_labels=True, # kde= True # ) # c.add_chain(create_chain(result_joint.samples, "joint")) # c.add_chain(create_chain(result_0.samples, "run0", "g")) # c.add_chain(create_chain(result_1.samples, "run1", "b")) # c.add_chain(create_chain(result_2.samples, "run2", "y")) # fig = c.plotter.plot() # plt.show() .. GENERATED FROM PYTHON SOURCE LINES 411-426 Corner plot comparison ---------------------- .. figure:: ../../_static/cornerplot-multiple-runs-Crab.png :alt: Corner plot of Crab runs Corner plot comparing the three Crab runs. We can see the joint analysis allows to better constrain the parameters than the individual runs (more observation time is of course better). One can note as well that one of the run has a notably different amplitude (possibly due to calibrations or/and atmospheric issues). .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 40.686 seconds) .. _sphx_glr_download_tutorials_api_nested_sampling_Crab.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/gammapy/gammapy-webpage/main?urlpath=lab/tree/notebooks/dev/tutorials/api/nested_sampling_Crab.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: nested_sampling_Crab.ipynb <nested_sampling_Crab.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: nested_sampling_Crab.py <nested_sampling_Crab.py>` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: nested_sampling_Crab.zip <nested_sampling_Crab.zip>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_