# Licensed under a 3-clause BSD style license - see LICENSE.rst
import collections
import logging
import numpy as np
from astropy import units as u
from astropy.coordinates import AltAz, Angle, SkyCoord
from astropy.coordinates.angle_utilities import angular_separation
from astropy.io import fits
from astropy.table import Table
from astropy.table import vstack as vstack_tables
from astropy.visualization import quantity_support
import matplotlib.pyplot as plt
from gammapy.maps import MapAxis, MapCoord, RegionGeom, WcsNDMap
from gammapy.utils.fits import earth_location_from_dict
from gammapy.utils.scripts import make_path
from gammapy.utils.testing import Checker
from gammapy.utils.time import time_ref_from_dict
from .gti import GTI
__all__ = ["EventList"]
log = logging.getLogger(__name__)
[docs]class EventList:
"""Event list.
Event list data is stored as ``table`` (`~astropy.table.Table`) data member.
The most important reconstructed event parameters
are available as the following columns:
- ``TIME`` - Mission elapsed time (sec)
- ``RA``, ``DEC`` - ICRS system position (deg)
- ``ENERGY`` - Energy (usually MeV for Fermi and TeV for IACTs)
Note that ``TIME`` is usually sorted, but sometimes it is not.
E.g. when simulating data, or processing it in certain ways.
So generally any analysis code should assume ``TIME`` is not sorted.
Other optional (columns) that are sometimes useful for high level analysis:
- ``GLON``, ``GLAT`` - Galactic coordinates (deg)
- ``DETX``, ``DETY`` - Field of view coordinates (deg)
Note that when reading data for analysis you shouldn't use those
values directly, but access them via properties which create objects
of the appropriate class:
- `time` for ``TIME``
- `radec` for ``RA``, ``DEC``
- `energy` for ``ENERGY``
- `galactic` for ``GLON``, ``GLAT``
Parameters
----------
table : `~astropy.table.Table`
Event list table
Examples
--------
>>> from gammapy.data import EventList
>>> events = EventList.read("$GAMMAPY_DATA/cta-1dc/data/baseline/gps/gps_baseline_110380.fits")
>>> print(events)
EventList
---------
<BLANKLINE>
Instrument : None
Telescope : CTA
Obs. ID : 110380
<BLANKLINE>
Number of events : 106217
Event rate : 59.273 1 / s
<BLANKLINE>
Time start : 59235.5
Time stop : 59235.52074074074
<BLANKLINE>
Min. energy : 3.00e-02 TeV
Max. energy : 1.46e+02 TeV
Median energy : 1.02e-01 TeV
<BLANKLINE>
Max. offset : 5.0 deg
<BLANKLINE>
"""
def __init__(self, table):
self.table = table
[docs] @classmethod
def read(cls, filename, **kwargs):
"""Read from FITS file.
Format specification: :ref:`gadf:iact-events`
Parameters
----------
filename : `pathlib.Path`, str
Filename
"""
filename = make_path(filename)
kwargs.setdefault("hdu", "EVENTS")
table = Table.read(filename, **kwargs)
return cls(table=table)
[docs] def to_table_hdu(self, format="gadf"):
"""
Convert event list to a `~astropy.io.fits.BinTableHDU`
Parameters
----------
format: str
Output format, currently only "gadf" is supported
Returns
-------
hdu: `astropy.io.fits.BinTableHDU`
EventList converted to FITS representation
"""
if format != "gadf":
raise ValueError(f"Only the 'gadf' format supported, got {format}")
return fits.BinTableHDU(self.table, name="EVENTS")
[docs] def write(self, filename, gti=None, overwrite=False, format="gadf"):
"""Write the event list to a FITS file.
If a GTI object is provided, it is saved into
a second extension in the file.
Parameters
----------
filename : `pathlib.Path`, str
Filename
gti : `~gammapy.data.GTI`
Good Time Intervals object to save to the same file.
Default is None.
overwrite : bool
Overwrite existing file?
format : str, optional
FITS format convention. By default files will be written
to the gamma-astro-data-formats (GADF) format.
"""
if format != "gadf":
raise ValueError(f"{format} is not a valid EventList format.")
meta_dict = self.table.meta
if "HDUCLAS1" in meta_dict.keys() and meta_dict["HDUCLAS1"] != "EVENTS":
raise ValueError("The HDUCLAS1 keyword must be 'EVENTS' for an EventList")
else:
meta_dict["HDUCLAS1"] = "EVENTS"
if "HDUCLASS" in meta_dict.keys() and meta_dict["HDUCLASS"] != "GADF":
raise ValueError("The HDUCLASS must be 'GADF' for format 'gadf'")
else:
meta_dict["HDUCLASS"] = "GADF"
filename = make_path(filename)
primary_hdu = fits.PrimaryHDU()
hdu_evt = self.to_table_hdu(format=format)
hdu_all = fits.HDUList([primary_hdu, hdu_evt])
if gti is not None:
if not isinstance(gti, GTI):
raise TypeError("gti must be an instance of GTI")
hdu_gti = gti.to_table_hdu(format=format)
hdu_all.append(hdu_gti)
hdu_all.writeto(filename, overwrite=overwrite)
[docs] @classmethod
def from_stack(cls, event_lists, **kwargs):
"""Stack (concatenate) list of event lists.
Calls `~astropy.table.vstack`.
Parameters
----------
event_lists : list
list of `~gammapy.data.EventList` to stack
"""
tables = [_.table for _ in event_lists]
stacked_table = vstack_tables(tables, **kwargs)
return cls(stacked_table)
[docs] def stack(self, other):
"""Stack with another EventList in place.
Calls `~astropy.table.vstack`.
Parameters
----------
other : `~gammapy.data.EventList`
Event list to stack to self
"""
self.table = vstack_tables([self.table, other.table])
def __str__(self):
info = self.__class__.__name__ + "\n"
info += "-" * len(self.__class__.__name__) + "\n\n"
instrument = self.table.meta.get("INSTRUME")
info += f"\tInstrument : {instrument}\n"
telescope = self.table.meta.get("TELESCOP")
info += f"\tTelescope : {telescope}\n"
obs_id = self.table.meta.get("OBS_ID", "")
info += f"\tObs. ID : {obs_id}\n\n"
info += f"\tNumber of events : {len(self.table)}\n"
rate = len(self.table) / self.observation_time_duration
info += f"\tEvent rate : {rate:.3f}\n\n"
info += f"\tTime start : {self.observation_time_start}\n"
info += f"\tTime stop : {self.observation_time_stop}\n\n"
info += f"\tMin. energy : {np.min(self.energy):.2e}\n"
info += f"\tMax. energy : {np.max(self.energy):.2e}\n"
info += f"\tMedian energy : {np.median(self.energy):.2e}\n\n"
if self.is_pointed_observation:
offset_max = np.max(self.offset)
info += f"\tMax. offset : {offset_max:.1f}\n"
return info.expandtabs(tabsize=2)
@property
def time_ref(self):
"""Time reference (`~astropy.time.Time`)."""
return time_ref_from_dict(self.table.meta)
@property
def time(self):
"""Event times (`~astropy.time.Time`).
Notes
-----
Times are automatically converted to 64-bit floats.
With 32-bit floats times will be incorrect by a few seconds
when e.g. adding them to the reference time.
"""
met = u.Quantity(self.table["TIME"].astype("float64"), "second")
return self.time_ref + met
@property
def observation_time_start(self):
"""Observation start time (`~astropy.time.Time`)."""
return self.time_ref + u.Quantity(self.table.meta["TSTART"], "second")
@property
def observation_time_stop(self):
"""Observation stop time (`~astropy.time.Time`)."""
return self.time_ref + u.Quantity(self.table.meta["TSTOP"], "second")
@property
def radec(self):
"""Event RA / DEC sky coordinates (`~astropy.coordinates.SkyCoord`)."""
lon, lat = self.table["RA"], self.table["DEC"]
return SkyCoord(lon, lat, unit="deg", frame="icrs")
@property
def galactic(self):
"""Event Galactic sky coordinates (`~astropy.coordinates.SkyCoord`).
Always computed from RA / DEC using Astropy.
"""
return self.radec.galactic
@property
def energy(self):
"""Event energies (`~astropy.units.Quantity`)."""
return self.table["ENERGY"].quantity
@property
def galactic_median(self):
"""Median position in radec"""
galactic = self.galactic
median_lon = np.median(galactic.l.wrap_at("180d"))
median_lat = np.median(galactic.b)
return SkyCoord(median_lon, median_lat, frame="galactic")
[docs] def select_row_subset(self, row_specifier):
"""Select table row subset.
Parameters
----------
row_specifier : slice, int, or array of ints
Specification for rows to select,
passed on to ``self.table[row_specifier]``.
Returns
-------
event_list : `EventList`
New event list with table row subset selected
Examples
--------
>>> from gammapy.data import EventList
>>> import numpy as np
>>> events = EventList.read("$GAMMAPY_DATA/cta-1dc/data/baseline/gps/gps_baseline_110380.fits")
>>> #Use a boolean mask as ``row_specifier``:
>>> mask = events.table['MC_ID'] == 1
>>> events2 = events.select_row_subset(mask)
>>> print(len(events2.table))
97978
>>> #Use row index array as ``row_specifier``:
>>> idx = np.where(events.table['MC_ID'] == 1)[0]
>>> events2 = events.select_row_subset(idx)
>>> print(len(events2.table))
97978
"""
table = self.table[row_specifier]
return self.__class__(table=table)
[docs] def select_energy(self, energy_range):
"""Select events in energy band.
Parameters
----------
energy_range : `~astropy.units.Quantity`
Energy range ``[energy_min, energy_max)``
Returns
-------
event_list : `EventList`
Copy of event list with selection applied.
Examples
--------
>>> from astropy import units as u
>>> from gammapy.data import EventList
>>> event_list = EventList.read('$GAMMAPY_DATA/fermi_3fhl/fermi_3fhl_events_selected.fits.gz')
>>> energy_range =[1, 20] * u.TeV
>>> event_list = event_list.select_energy(energy_range=energy_range)
"""
energy = self.energy
mask = energy_range[0] <= energy
mask &= energy < energy_range[1]
return self.select_row_subset(mask)
[docs] def select_time(self, time_interval):
"""Select events in time interval.
Parameters
----------
time_interval : `astropy.time.Time`
Start time (inclusive) and stop time (exclusive) for the selection.
Returns
-------
events : `EventList`
Copy of event list with selection applied.
"""
time = self.time
mask = time_interval[0] <= time
mask &= time < time_interval[1]
return self.select_row_subset(mask)
[docs] def select_region(self, regions, wcs=None):
"""Select events in given region.
Parameters
----------
regions : str, `~regions.Region` or list of `~regions.Region`
Region or list of regions (pixel or sky regions accepted).
A region can be defined as a string ind DS9 format as well.
See http://ds9.si.edu/doc/ref/region.html for details.
wcs : `~astropy.wcs.WCS`
World coordinate system transformation
Returns
-------
event_list : `EventList`
Copy of event list with selection applied.
"""
geom = RegionGeom.from_regions(regions, wcs=wcs)
mask = geom.contains(self.radec)
return self.select_row_subset(mask)
[docs] def select_parameter(self, parameter, band):
"""Select events with respect to a specified parameter.
Parameters
----------
parameter : str
Parameter used for the selection. Must be present in `self.table`.
band : tuple or `astropy.units.Quantity`
Min and max value for the parameter to be selected (min <= parameter < max).
If parameter is not dimensionless you have to provide a Quantity.
Returns
-------
event_list : `EventList`
Copy of event list with selection applied.
Examples
--------
>>> from astropy import units as u
>>> from gammapy.data import EventList
>>> event_list = EventList.read('$GAMMAPY_DATA/fermi_3fhl/fermi_3fhl_events_selected.fits.gz')
>>> zd = (0, 30) * u.deg
>>> event_list = event_list.select_parameter(parameter='ZENITH_ANGLE', band=zd)
>>> print(len(event_list.table))
123944
"""
mask = band[0] <= self.table[parameter].quantity
mask &= self.table[parameter].quantity < band[1]
return self.select_row_subset(mask)
@property
def _default_plot_energy_axis(self):
energy = self.energy
return MapAxis.from_energy_bounds(
energy_min=energy.min(), energy_max=energy.max(), nbin=50
)
[docs] def plot_energy(self, ax=None, **kwargs):
"""Plot counts as a function of energy.
Parameters
----------
ax : `~matplotlib.axes.Axes` or None
Axes
**kwargs : dict
Keyword arguments passed to `~matplotlib.pyplot.hist`
Returns
-------
ax : `~matplotlib.axes.Axes` or None
Axes
"""
ax = plt.gca() if ax is None else ax
energy_axis = self._default_plot_energy_axis
kwargs.setdefault("log", True)
kwargs.setdefault("histtype", "step")
kwargs.setdefault("bins", energy_axis.edges)
with quantity_support():
ax.hist(self.energy, **kwargs)
energy_axis.format_plot_xaxis(ax=ax)
ax.set_ylabel("Counts")
ax.set_yscale("log")
return ax
[docs] def plot_time(self, ax=None, **kwargs):
"""Plots an event rate time curve.
Parameters
----------
ax : `~matplotlib.axes.Axes` or None
Axes
**kwargs : dict
Keyword arguments passed to `~matplotlib.pyplot.errorbar`
Returns
-------
ax : `~matplotlib.axes.Axes`
Axes
"""
ax = plt.gca() if ax is None else ax
# Note the events are not necessarily in time order
time = self.table["TIME"]
time = time - np.min(time)
ax.set_xlabel("Time (sec)")
ax.set_ylabel("Counts")
y, x_edges = np.histogram(time, bins=20)
xerr = np.diff(x_edges) / 2
x = x_edges[:-1] + xerr
yerr = np.sqrt(y)
kwargs.setdefault("fmt", "none")
ax.errorbar(x=x, y=y, xerr=xerr, yerr=yerr, **kwargs)
return ax
[docs] def plot_offset2_distribution(self, ax=None, center=None, **kwargs):
"""Plot offset^2 distribution of the events.
The distribution shown in this plot is for this quantity::
offset = center.separation(events.radec).deg
offset2 = offset ** 2
Note that this method is just for a quicklook plot.
If you want to do computations with the offset or offset^2 values, you can
use the line above. As an example, here's how to compute the 68% event
containment radius using `numpy.percentile`::
import numpy as np
r68 = np.percentile(offset, q=68)
Parameters
----------
ax : `~matplotlib.axes.Axes` (optional)
Axes
center : `astropy.coordinates.SkyCoord`
Center position for the offset^2 distribution.
Default is the observation pointing position.
**kwargs :
Extra keyword arguments are passed to `~matplotlib.pyplot.hist`.
Returns
-------
ax : `~matplotlib.axes.Axes`
Axes
Examples
--------
Load an example event list:
>>> from gammapy.data import EventList
>>> from astropy import units as u
>>> events = EventList.read('$GAMMAPY_DATA/hess-dl3-dr1/data/hess_dl3_dr1_obs_id_023523.fits.gz')
>>> #Plot the offset^2 distribution wrt. the observation pointing position
>>> #(this is a commonly used plot to check the background spatial distribution):
>>> events.plot_offset2_distribution() # doctest: +SKIP
Plot the offset^2 distribution wrt. the Crab pulsar position
(this is commonly used to check both the gamma-ray signal and the background spatial distribution):
>>> import numpy as np
>>> from astropy.coordinates import SkyCoord
>>> center = SkyCoord(83.63307, 22.01449, unit='deg')
>>> bins = np.linspace(start=0, stop=0.3 ** 2, num=30) * u.deg ** 2
>>> events.plot_offset2_distribution(center=center, bins=bins) # doctest: +SKIP
Note how we passed the ``bins`` option of `matplotlib.pyplot.hist` to control the histogram binning,
in this case 30 bins ranging from 0 to (0.3 deg)^2.
"""
ax = plt.gca() if ax is None else ax
if center is None:
center = self._plot_center
offset2 = center.separation(self.radec) ** 2
kwargs.setdefault("histtype", "step")
kwargs.setdefault("bins", 30)
with quantity_support():
ax.hist(offset2, **kwargs)
ax.set_xlabel(f"Offset^2 ({ax.xaxis.units})")
ax.set_ylabel("Counts")
return ax
[docs] def plot_energy_offset(self, ax=None, center=None, **kwargs):
"""Plot counts histogram with energy and offset axes
Parameters
----------
ax : `~matplotlib.pyplot.Axis`
Plot axis
center : `~astropy.coordinates.SkyCoord`
Sky coord from which offset is computed
**kwargs : dict
Keyword arguments forwarded to `~matplotlib.pyplot.pcolormesh`
Returns
-------
ax : `~matplotlib.pyplot.Axis`
Plot axis
"""
from matplotlib.colors import LogNorm
ax = plt.gca() if ax is None else ax
if center is None:
center = self._plot_center
energy_axis = self._default_plot_energy_axis
offset = center.separation(self.radec)
offset_axis = MapAxis.from_bounds(
0 * u.deg, offset.max(), nbin=30, name="offset"
)
counts = np.histogram2d(
x=self.energy,
y=offset,
bins=(energy_axis.edges, offset_axis.edges),
)[0]
kwargs.setdefault("norm", LogNorm())
with quantity_support():
ax.pcolormesh(energy_axis.edges, offset_axis.edges, counts.T, **kwargs)
energy_axis.format_plot_xaxis(ax=ax)
offset_axis.format_plot_yaxis(ax=ax)
return ax
[docs] def check(self, checks="all"):
"""Run checks.
This is a generator that yields a list of dicts.
"""
checker = EventListChecker(self)
return checker.run(checks=checks)
[docs] def map_coord(self, geom):
"""Event map coordinates for a given geometry.
Parameters
----------
geom : `~gammapy.maps.Geom`
Geometry
Returns
-------
coord : `~gammapy.maps.MapCoord`
Coordinates
"""
coord = {"skycoord": self.radec}
cols = {k.upper(): v for k, v in self.table.columns.items()}
for axis in geom.axes:
try:
col = cols[axis.name.upper()]
coord[axis.name] = u.Quantity(col).to(axis.unit)
except KeyError:
raise KeyError(f"Column not found in event list: {axis.name!r}")
return MapCoord.create(coord)
[docs] def select_mask(self, mask):
"""Select events inside a mask (`EventList`).
Parameters
----------
mask : `~gammapy.maps.Map`
Mask
Returns
-------
event_list : `EventList`
Copy of event list with selection applied.
Examples
--------
>>> from gammapy.data import EventList
>>> from gammapy.maps import WcsGeom, Map
>>> geom = WcsGeom.create(skydir=(0,0), width=(4, 4), frame="galactic")
>>> mask = geom.region_mask("galactic;circle(0, 0, 0.5)")
>>> events = EventList.read("$GAMMAPY_DATA/cta-1dc/data/baseline/gps/gps_baseline_110380.fits")
>>> masked_event = events.select_mask(mask)
>>> len(masked_event.table)
5594
"""
coord = self.map_coord(mask.geom)
values = mask.get_by_coord(coord)
valid = values > 0
return self.select_row_subset(valid)
@property
def observatory_earth_location(self):
"""Observatory location (`~astropy.coordinates.EarthLocation`)."""
return earth_location_from_dict(self.table.meta)
@property
def observation_time_duration(self):
"""Observation time duration in seconds (`~astropy.units.Quantity`).
This is a keyword related to IACTs
The wall time, including dead-time.
"""
time_delta = (self.observation_time_stop - self.observation_time_start).sec
return u.Quantity(time_delta, "s")
@property
def observation_live_time_duration(self):
"""Live-time duration in seconds (`~astropy.units.Quantity`).
The dead-time-corrected observation time.
- In Fermi-LAT it is automatically provided in the header of the event list.
- In IACTs is computed as ``t_live = t_observation * (1 - f_dead)``
where ``f_dead`` is the dead-time fraction.
"""
return u.Quantity(self.table.meta["LIVETIME"], "second")
@property
def observation_dead_time_fraction(self):
"""Dead-time fraction (float).
This is a keyword related to IACTs
Defined as dead-time over observation time.
Dead-time is defined as the time during the observation
where the detector didn't record events:
http://en.wikipedia.org/wiki/Dead_time
https://ui.adsabs.harvard.edu/abs/2004APh....22..285F
The dead-time fraction is used in the live-time computation,
which in turn is used in the exposure and flux computation.
"""
return 1 - self.table.meta["DEADC"]
@property
def altaz_frame(self):
"""ALT / AZ frame (`~astropy.coordinates.AltAz`)."""
return AltAz(obstime=self.time, location=self.observatory_earth_location)
@property
def altaz(self):
"""ALT / AZ position computed from RA / DEC (`~astropy.coordinates.SkyCoord`)."""
return self.radec.transform_to(self.altaz_frame)
@property
def altaz_from_table(self):
"""ALT / AZ position from table (`~astropy.coordinates.SkyCoord`)."""
lon = self.table["AZ"]
lat = self.table["ALT"]
return SkyCoord(lon, lat, unit="deg", frame=self.altaz_frame)
@property
def pointing_radec(self):
"""Pointing RA / DEC sky coordinates (`~astropy.coordinates.SkyCoord`)."""
info = self.table.meta
lon, lat = info["RA_PNT"], info["DEC_PNT"]
return SkyCoord(lon, lat, unit="deg", frame="icrs")
@property
def offset(self):
"""Event offset from the array pointing position (`~astropy.coordinates.Angle`)."""
position = self.radec
center = self.pointing_radec
offset = center.separation(position)
return Angle(offset, unit="deg")
@property
def offset_from_median(self):
"""Event offset from the median position (`~astropy.coordinates.Angle`)."""
position = self.radec
center = self.galactic_median
offset = center.separation(position)
return Angle(offset, unit="deg")
[docs] def select_offset(self, offset_band):
"""Select events in offset band.
Parameters
----------
offset_band : `~astropy.coordinates.Angle`
offset band ``[offset_min, offset_max)``
Returns
-------
event_list : `EventList`
Copy of event list with selection applied.
Examples
--------
>>> from gammapy.data import EventList
>>> import astropy.units as u
>>> events = EventList.read("$GAMMAPY_DATA/cta-1dc/data/baseline/gps/gps_baseline_110380.fits")
>>> selected_events = events.select_offset([0.3, 0.9]*u.deg)
>>> len(selected_events.table)
12688
"""
offset = self.offset
mask = offset_band[0] <= offset
mask &= offset < offset_band[1]
return self.select_row_subset(mask)
[docs] def select_rad_max(self, rad_max, position=None):
"""Select energy dependent offset
Parameters
----------
rad_max : `~gamapy.irf.RadMax2D`
Rad max definition
position : `~astropy.coordinates.SkyCoord`
Center position. By default the pointing position is used.
Returns
-------
event_list : `EventList`
Copy of event list with selection applied.
"""
if position is None:
position = self.pointing_radec
offset = position.separation(self.pointing_radec)
separation = position.separation(self.radec)
rad_max_for_events = rad_max.evaluate(
method="nearest", energy=self.energy, offset=offset
)
selected = separation <= rad_max_for_events
return self.select_row_subset(selected)
@property
def is_pointed_observation(self):
"""Whether observation is pointed"""
return "RA_PNT" in self.table.meta
[docs] def peek(self, allsky=False):
"""Quick look plots.
Parameters
----------
allsky : bool
Whether to look at the events allsky
"""
import matplotlib.gridspec as gridspec
if allsky:
gs = gridspec.GridSpec(nrows=2, ncols=2)
fig = plt.figure(figsize=(8, 8))
else:
gs = gridspec.GridSpec(nrows=2, ncols=3)
fig = plt.figure(figsize=(12, 8))
# energy plot
ax_energy = fig.add_subplot(gs[1, 0])
self.plot_energy(ax=ax_energy)
# offset plots
if not allsky:
ax_offset = fig.add_subplot(gs[0, 1])
self.plot_offset2_distribution(ax=ax_offset)
ax_energy_offset = fig.add_subplot(gs[0, 2])
self.plot_energy_offset(ax=ax_energy_offset)
# time plot
ax_time = fig.add_subplot(gs[1, 1])
self.plot_time(ax=ax_time)
# image plot
m = self._counts_image(allsky=allsky)
if allsky:
ax_image = fig.add_subplot(gs[0, :], projection=m.geom.wcs)
else:
ax_image = fig.add_subplot(gs[0, 0], projection=m.geom.wcs)
m.plot(ax=ax_image, stretch="sqrt", vmin=0)
plt.subplots_adjust(wspace=0.3)
@property
def _plot_center(self):
if self.is_pointed_observation:
return self.pointing_radec
else:
return self.galactic_median
@property
def _plot_width(self):
if self.is_pointed_observation:
offset = self.offset
else:
offset = self.offset_from_median
return 2 * offset.max()
def _counts_image(self, allsky):
if allsky:
opts = {
"npix": (360, 180),
"binsz": 1.0,
"proj": "AIT",
"frame": "galactic",
}
else:
opts = {
"width": self._plot_width,
"binsz": 0.05,
"proj": "TAN",
"frame": "galactic",
"skydir": self._plot_center,
}
m = WcsNDMap.create(**opts)
m.fill_by_coord(self.radec)
m = m.smooth(width=0.5)
return m
[docs] def plot_image(self, ax=None, allsky=False):
"""Quick look counts map sky plot.
Parameters
----------
ax : `~matplotlib.pyplot.Axes`
Axes to plot on.
allsky : bool,
Whether to plot on an all sky geom
"""
if ax is None:
ax = plt.gca()
m = self._counts_image(allsky=allsky)
m.plot(ax=ax, stretch="sqrt")
class EventListChecker(Checker):
"""Event list checker.
Data format specification: ref:`gadf:iact-events`
Parameters
----------
event_list : `~gammapy.data.EventList`
Event list
"""
CHECKS = {
"meta": "check_meta",
"columns": "check_columns",
"times": "check_times",
"coordinates_galactic": "check_coordinates_galactic",
"coordinates_altaz": "check_coordinates_altaz",
}
accuracy = {"angle": Angle("1 arcsec"), "time": u.Quantity(1, "microsecond")}
# https://gamma-astro-data-formats.readthedocs.io/en/latest/events/events.html#mandatory-header-keywords
meta_required = [
"HDUCLASS",
"HDUDOC",
"HDUVERS",
"HDUCLAS1",
"OBS_ID",
"TSTART",
"TSTOP",
"ONTIME",
"LIVETIME",
"DEADC",
"RA_PNT",
"DEC_PNT",
# TODO: what to do about these?
# They are currently listed as required in the spec,
# but I think we should just require ICRS and those
# are irrelevant, should not be used.
# 'RADECSYS',
# 'EQUINOX',
"ORIGIN",
"TELESCOP",
"INSTRUME",
"CREATOR",
# https://gamma-astro-data-formats.readthedocs.io/en/latest/general/time.html#time-formats
"MJDREFI",
"MJDREFF",
"TIMEUNIT",
"TIMESYS",
"TIMEREF",
# https://gamma-astro-data-formats.readthedocs.io/en/latest/general/coordinates.html#coords-location
"GEOLON",
"GEOLAT",
"ALTITUDE",
]
_col = collections.namedtuple("col", ["name", "unit"])
columns_required = [
_col(name="EVENT_ID", unit=""),
_col(name="TIME", unit="s"),
_col(name="RA", unit="deg"),
_col(name="DEC", unit="deg"),
_col(name="ENERGY", unit="TeV"),
]
def __init__(self, event_list):
self.event_list = event_list
def _record(self, level="info", msg=None):
obs_id = self.event_list.table.meta["OBS_ID"]
return {"level": level, "obs_id": obs_id, "msg": msg}
def check_meta(self):
meta_missing = sorted(set(self.meta_required) - set(self.event_list.table.meta))
if meta_missing:
yield self._record(
level="error", msg=f"Missing meta keys: {meta_missing!r}"
)
def check_columns(self):
t = self.event_list.table
if len(t) == 0:
yield self._record(level="error", msg="Events table has zero rows")
for name, unit in self.columns_required:
if name not in t.colnames:
yield self._record(level="error", msg=f"Missing table column: {name!r}")
else:
if u.Unit(unit) != (t[name].unit or ""):
yield self._record(
level="error", msg=f"Invalid unit for column: {name!r}"
)
def check_times(self):
dt = (self.event_list.time - self.event_list.observation_time_start).sec
if dt.min() < self.accuracy["time"].to_value("s"):
yield self._record(level="error", msg="Event times before obs start time")
dt = (self.event_list.time - self.event_list.observation_time_stop).sec
if dt.max() > self.accuracy["time"].to_value("s"):
yield self._record(level="error", msg="Event times after the obs end time")
if np.min(np.diff(dt)) <= 0:
yield self._record(level="error", msg="Events are not time-ordered.")
def check_coordinates_galactic(self):
"""Check if RA / DEC matches GLON / GLAT."""
t = self.event_list.table
if "GLON" not in t.colnames:
return
galactic = SkyCoord(t["GLON"], t["GLAT"], unit="deg", frame="galactic")
separation = self.event_list.radec.separation(galactic).to("arcsec")
if separation.max() > self.accuracy["angle"]:
yield self._record(
level="error", msg="GLON / GLAT not consistent with RA / DEC"
)
def check_coordinates_altaz(self):
"""Check if ALT / AZ matches RA / DEC."""
t = self.event_list.table
if "AZ" not in t.colnames:
return
altaz_astropy = self.event_list.altaz
separation = angular_separation(
altaz_astropy.data.lon,
altaz_astropy.data.lat,
t["AZ"].quantity,
t["ALT"].quantity,
)
if separation.max() > self.accuracy["angle"]:
yield self._record(
level="error", msg="ALT / AZ not consistent with RA / DEC"
)