# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Time-dependent models."""
import numpy as np
import scipy.interpolate
from astropy import units as u
from astropy.table import Table
from astropy.time import Time
from astropy.utils import lazyproperty
from gammapy.maps import RegionNDMap, TimeMapAxis
from gammapy.modeling import Parameter
from gammapy.utils.random import InverseCDFSampler, get_random_state
from gammapy.utils.scripts import make_path
from gammapy.utils.time import time_ref_from_dict
from .core import ModelBase
__all__ = [
"ConstantTemporalModel",
"ExpDecayTemporalModel",
"GaussianTemporalModel",
"GeneralizedGaussianTemporalModel",
"LightCurveTemplateTemporalModel",
"LinearTemporalModel",
"PowerLawTemporalModel",
"SineTemporalModel",
"TemporalModel",
]
# TODO: make this a small ABC to define a uniform interface.
[docs]class TemporalModel(ModelBase):
"""Temporal model base class.
evaluates on astropy.time.Time objects"""
_type = "temporal"
[docs] def __call__(self, time):
"""Evaluate model
Parameters
----------
time : `~astropy.time.Time`
Time object
"""
kwargs = {par.name: par.quantity for par in self.parameters}
time = u.Quantity(time.mjd, "day")
return self.evaluate(time, **kwargs)
@property
def type(self):
return self._type
[docs] @staticmethod
def time_sum(t_min, t_max):
"""
Total time between t_min and t_max
Parameters
----------
t_min, t_max : `~astropy.time.Time`
Lower and upper bound of integration range
Returns
-------
time_sum : `~astropy.time.TimeDelta`
Summed time in the intervals.
"""
diff = t_max - t_min
# TODO: this is a work-around for https://github.com/astropy/astropy/issues/10501
return u.Quantity(np.sum(diff.to_value("day")), "day")
[docs] def plot(self, time_range, ax=None, **kwargs):
"""
Plot Temporal Model.
Parameters
----------
time_range : `~astropy.time.Time`
times to plot the model
ax : `~matplotlib.axes.Axes`, optional
Axis to plot on
**kwargs : dict
Keywords forwarded to `~matplotlib.pyplot.errorbar`
Returns
-------
ax : `~matplotlib.axes.Axes`, optional
axis
"""
time_min, time_max = time_range
time_axis = TimeMapAxis.from_time_bounds(
time_min=time_min, time_max=time_max, nbin=100
)
m = RegionNDMap.create(region=None, axes=[time_axis])
kwargs.setdefault("marker", "None")
kwargs.setdefault("ls", "-")
kwargs.setdefault("xerr", None)
m.quantity = self(time_axis.time_mid)
ax = m.plot(ax=ax, **kwargs)
ax.set_ylabel("Norm / A.U.")
return ax
[docs] def sample_time(self, n_events, t_min, t_max, t_delta="1 s", random_state=0):
"""Sample arrival times of events.
Parameters
----------
n_events : int
Number of events to sample.
t_min : `~astropy.time.Time`
Start time of the sampling.
t_max : `~astropy.time.Time`
Stop time of the sampling.
t_delta : `~astropy.units.Quantity`
Time step used for sampling of the temporal model.
random_state : {int, 'random-seed', 'global-rng', `~numpy.random.RandomState`}
Defines random number generator initialisation.
Passed to `~gammapy.utils.random.get_random_state`.
Returns
-------
time : `~astropy.units.Quantity`
Array with times of the sampled events.
"""
t_min = Time(t_min)
t_max = Time(t_max)
t_delta = u.Quantity(t_delta)
random_state = get_random_state(random_state)
ontime = u.Quantity((t_max - t_min).sec, "s")
time_unit = (
u.Unit(self.table.meta["TIMEUNIT"])
if hasattr(self, "table")
else ontime.unit
)
t_stop = ontime.to_value(time_unit)
# TODO: the separate time unit handling is unfortunate, but the quantity support for np.arange and np.interp
# is still incomplete, refactor once we change to recent numpy and astropy versions
t_step = t_delta.to_value(time_unit)
if hasattr(self, "table"):
t = np.arange(0, t_stop, t_step)
pdf = self.evaluate(t)
sampler = InverseCDFSampler(pdf=pdf, random_state=random_state)
time_pix = sampler.sample(n_events)[0]
time = np.interp(time_pix, np.arange(len(t)), t) * time_unit
else:
t_step = (t_step * u.s).to("d")
t = Time(np.arange(t_min.mjd, t_max.mjd, t_step.value), format="mjd")
pdf = self(t)
sampler = InverseCDFSampler(pdf=pdf, random_state=random_state)
time_pix = sampler.sample(n_events)[0]
time = (
np.interp(time_pix, np.arange(len(t)), t.value - min(t.value))
* t_step.unit
).to(time_unit)
return t_min + time
[docs]class ConstantTemporalModel(TemporalModel):
"""Constant temporal model."""
tag = ["ConstantTemporalModel", "const"]
[docs] @staticmethod
def evaluate(time):
"""Evaluate at given times."""
return np.ones(time.shape)
[docs] def integral(self, t_min, t_max):
"""Evaluate the integrated flux within the given time intervals
Parameters
----------
t_min : `~astropy.time.Time`
Start times of observation
t_max : `~astropy.time.Time`
Stop times of observation
Returns
-------
norm : `~astropy.units.Quantity`
Integrated flux norm on the given time intervals
"""
return (t_max - t_min) / self.time_sum(t_min, t_max)
[docs]class LinearTemporalModel(TemporalModel):
"""Temporal model with a linear variation.
For more information see :ref:`linear-temporal-model`.
Parameters
----------
alpha : float
Constant term of the baseline flux
beta : `~astropy.units.Quantity`
Time variation coefficient of the flux
t_ref : `~astropy.units.Quantity`
The reference time in mjd. Frozen per default, at 2000-01-01.
"""
tag = ["LinearTemporalModel", "linear"]
alpha = Parameter("alpha", 1.0, frozen=False)
beta = Parameter("beta", 0.0, unit="d-1", frozen=False)
_t_ref_default = Time("2000-01-01")
t_ref = Parameter("t_ref", _t_ref_default.mjd, unit="day", frozen=True)
[docs] @staticmethod
def evaluate(time, alpha, beta, t_ref):
"""Evaluate at given times"""
return alpha + beta * (time - t_ref)
[docs] def integral(self, t_min, t_max):
"""Evaluate the integrated flux within the given time intervals
Parameters
----------
t_min : `~astropy.time.Time`
Start times of observation
t_max : `~astropy.time.Time`
Stop times of observation
Returns
-------
norm : float
Integrated flux norm on the given time intervals
"""
pars = self.parameters
alpha = pars["alpha"]
beta = pars["beta"].quantity
t_ref = Time(pars["t_ref"].quantity, format="mjd")
value = alpha * (t_max - t_min) + beta / 2.0 * (
(t_max - t_ref) * (t_max - t_ref) - (t_min - t_ref) * (t_min - t_ref)
)
return value / self.time_sum(t_min, t_max)
[docs]class ExpDecayTemporalModel(TemporalModel):
r"""Temporal model with an exponential decay.
.. math::
F(t) = exp(-(t - t_ref)/t0)
Parameters
----------
t0 : `~astropy.units.Quantity`
Decay time scale
t_ref : `~astropy.units.Quantity`
The reference time in mjd. Frozen per default, at 2000-01-01 .
"""
tag = ["ExpDecayTemporalModel", "exp-decay"]
t0 = Parameter("t0", "1 d", frozen=False)
_t_ref_default = Time("2000-01-01")
t_ref = Parameter("t_ref", _t_ref_default.mjd, unit="day", frozen=True)
[docs] @staticmethod
def evaluate(time, t0, t_ref):
"""Evaluate at given times"""
return np.exp(-(time - t_ref) / t0)
[docs] def integral(self, t_min, t_max):
"""Evaluate the integrated flux within the given time intervals
Parameters
----------
t_min : `~astropy.time.Time`
Start times of observation
t_max : `~astropy.time.Time`
Stop times of observation
Returns
-------
norm : float
Integrated flux norm on the given time intervals
"""
pars = self.parameters
t0 = pars["t0"].quantity
t_ref = Time(pars["t_ref"].quantity, format="mjd")
value = self.evaluate(t_max, t0, t_ref) - self.evaluate(t_min, t0, t_ref)
return -t0 * value / self.time_sum(t_min, t_max)
[docs]class GaussianTemporalModel(TemporalModel):
r"""A Gaussian temporal profile
.. math::
F(t) = exp( -0.5 * \frac{ (t - t_{ref})^2 } { \sigma^2 })
Parameters
----------
t_ref : `~astropy.units.Quantity`
The reference time in mjd at the peak.
sigma : `~astropy.units.Quantity`
Width of the gaussian profile.
"""
tag = ["GaussianTemporalModel", "gauss"]
_t_ref_default = Time("2000-01-01")
t_ref = Parameter("t_ref", _t_ref_default.mjd, unit="day", frozen=False)
sigma = Parameter("sigma", "1 d", frozen=False)
[docs] @staticmethod
def evaluate(time, t_ref, sigma):
return np.exp(-((time - t_ref) ** 2) / (2 * sigma**2))
[docs] def integral(self, t_min, t_max, **kwargs):
"""Evaluate the integrated flux within the given time intervals
Parameters
----------
t_min : `~astropy.time.Time`
Start times of observation
t_max : `~astropy.time.Time`
Stop times of observation
Returns
-------
norm : float
Integrated flux norm on the given time intervals
"""
pars = self.parameters
sigma = pars["sigma"].quantity
t_ref = Time(pars["t_ref"].quantity, format="mjd")
norm = np.sqrt(np.pi / 2) * sigma
u_min = (t_min - t_ref) / (np.sqrt(2) * sigma)
u_max = (t_max - t_ref) / (np.sqrt(2) * sigma)
integral = norm * (scipy.special.erf(u_max) - scipy.special.erf(u_min))
return integral / self.time_sum(t_min, t_max)
[docs]class GeneralizedGaussianTemporalModel(TemporalModel):
r"""A generalized Gaussian temporal profile
.. math::
F(t) = exp( - 0.5 * (\frac{ \lvert t - t_{ref} \rvert}{t_rise}) ^ {1 / \eta}) for t < t_ref
F(t) = exp( - 0.5 * (\frac{ \lvert t - t_{ref} \rvert}{t_decay}) ^ {1 / \eta}) for t > t_ref
Parameters
----------
t_ref : `~astropy.units.Quantity`
The time of the pulse's maximum intensity.
t_rise : `~astropy.units.Quantity`
Rise time constant.
t_decay : `~astropy.units.Quantity`
Decay time constant.
eta : `~astropy.units.Quantity`
Inverse pulse sharpness -> higher values implies a more peaked pulse
"""
tag = ["GeneralizedGaussianTemporalModel", "gengauss"]
_t_ref_default = Time("2000-01-01")
t_ref = Parameter("t_ref", _t_ref_default.mjd, unit="day", frozen=False)
t_rise = Parameter("t_rise", "1d", frozen=False)
t_decay = Parameter("t_decay", "1d", frozen=False)
eta = Parameter("eta", 1 / 2, unit="", frozen=False)
[docs] @staticmethod
def evaluate(time, t_ref, t_rise, t_decay, eta):
val_rise = np.exp(
-0.5
* (np.abs(u.Quantity(time - t_ref, "d")) ** (1 / eta))
/ (t_rise ** (1 / eta))
)
val_decay = np.exp(
-0.5
* (np.abs(u.Quantity(time - t_ref, "d")) ** (1 / eta))
/ (t_decay ** (1 / eta))
)
val = np.where(time < t_ref, val_rise, val_decay)
return val
[docs] def integral(self, t_min, t_max, **kwargs):
"""Evaluate the integrated flux within the given time intervals
Parameters
----------
t_min: `~astropy.time.Time`
Start times of observation
t_max: `~astropy.time.Time`
Stop times of observation
Returns
-------
norm : float
Integrated flux norm on the given time intervals
"""
pars = self.parameters
t_rise = pars["t_rise"].quantity
t_decay = pars["t_decay"].quantity
eta = pars["eta"].quantity
t_ref = Time(pars["t_ref"].quantity, format="mjd")
integral = scipy.integrate.quad(
self.evaluate, t_min.mjd, t_max.mjd, args=(t_ref.mjd, t_rise, t_decay, eta)
)[0]
return integral / self.time_sum(t_min, t_max).to_value("d")
[docs]class LightCurveTemplateTemporalModel(TemporalModel):
"""Temporal light curve model.
The lightcurve is given as a table with columns ``time`` and ``norm``.
The ``norm`` is supposed to be a unit-less multiplicative factor in the model,
to be multiplied with a spectral model.
The model does linear interpolation for times between the given ``(time, norm)`` values.
The implementation currently uses `scipy.interpolate. InterpolatedUnivariateSpline`,
using degree ``k=1`` to get linear interpolation.
This class also contains an ``integral`` method, making the computation of
mean fluxes for a given time interval a one-liner.
Parameters
----------
table : `~astropy.table.Table`
A table with 'TIME' vs 'NORM'
Examples
--------
Read an example light curve object:
>>> from gammapy.modeling.models import LightCurveTemplateTemporalModel
>>> path = '$GAMMAPY_DATA/tests/models/light_curve/lightcrv_PKSB1222+216.fits'
>>> light_curve = LightCurveTemplateTemporalModel.read(path)
Show basic information about the lightcurve:
>>> print(light_curve)
LightCurveTemplateTemporalModel model summary:
Start time: 59000.5 MJD
End time: 61862.5 MJD
Norm min: 0.01551196351647377
Norm max: 1.0
<BLANKLINE>
Compute ``norm`` at a given time:
>>> light_curve.evaluate(60000)
array(0.01551196)
Compute mean ``norm`` in a given time interval:
>>> from astropy.time import Time
>>> times = Time([60000, 61000], format='mjd')
>>> light_curve.integral(times[0], times[1])
<Quantity 0.01721725>
"""
tag = ["LightCurveTemplateTemporalModel", "template"]
def __init__(self, table, filename=None):
self.table = table
if filename is not None:
filename = str(make_path(filename))
self.filename = filename
super().__init__()
def __str__(self):
norm = self.table["NORM"]
return (
f"{self.__class__.__name__} model summary:\n"
f"Start time: {self._time[0].mjd} MJD\n"
f"End time: {self._time[-1].mjd} MJD\n"
f"Norm min: {norm.min()}\n"
f"Norm max: {norm.max()}\n"
)
[docs] @classmethod
def read(cls, path):
"""Read lightcurve model table from FITS file.
TODO: This doesn't read the XML part of the model yet.
"""
filename = str(make_path(path))
return cls(Table.read(filename), filename=filename)
[docs] def write(self, path=None, overwrite=False):
if path is None:
path = self.filename
if path is None:
raise ValueError(f"filename is required for {self.tag}")
else:
self.filename = str(make_path(path))
self.table.write(self.filename, overwrite=overwrite)
@lazyproperty
def _interpolator(self, ext=0):
x = self._time.value
y = self.table["NORM"].data
return scipy.interpolate.InterpolatedUnivariateSpline(x, y, k=1, ext=ext)
@lazyproperty
def _time_ref(self):
return time_ref_from_dict(self.table.meta)
@lazyproperty
def _time(self):
return self._time_ref + self.table["TIME"].data * getattr(
u, self.table.meta["TIMEUNIT"]
)
[docs] def evaluate(self, time, ext=0):
"""Evaluate for a given time.
Parameters
----------
time : array_like
Time since the ``reference`` time.
ext : int or str, optional, default: 0
Parameter passed to ~scipy.interpolate.InterpolatedUnivariateSpline
Controls the extrapolation mode for GTIs outside the range
0 or "extrapolate", return the extrapolated value.
1 or "zeros", return 0
2 or "raise", raise a ValueError
3 or "const", return the boundary value.
Returns
-------
norm : array_like
Norm at the given times.
"""
return self._interpolator(time, ext=ext)
[docs] def integral(self, t_min, t_max):
"""Evaluate the integrated flux within the given time intervals
Parameters
----------
t_min: `~astropy.time.Time`
Start times of observation
t_max: `~astropy.time.Time`
Stop times of observation
Returns
-------
norm: The model integrated flux
"""
n1 = self._interpolator.antiderivative()(t_max.mjd)
n2 = self._interpolator.antiderivative()(t_min.mjd)
return u.Quantity(n1 - n2, "day") / self.time_sum(t_min, t_max)
[docs] @classmethod
def from_dict(cls, data):
return cls.read(data["temporal"]["filename"])
[docs] def to_dict(self, full_output=False):
"""Create dict for YAML serialisation"""
return {self._type: {"type": self.tag[0], "filename": self.filename}}
[docs]class PowerLawTemporalModel(TemporalModel):
"""Temporal model with a Power Law decay.
For more information see :ref:`powerlaw-temporal-model`.
Parameters
----------
alpha : float
Decay time power
t_ref: `~astropy.units.Quantity`
The reference time in mjd. Frozen by default, at 2000-01-01.
t0: `~astropy.units.Quantity`
The scaling time in mjd. Fixed by default, at 1 day.
"""
tag = ["PowerLawTemporalModel", "powerlaw"]
alpha = Parameter("alpha", 1.0, frozen=False)
_t_ref_default = Time("2000-01-01")
t_ref = Parameter("t_ref", _t_ref_default.mjd, unit="day", frozen=True)
t0 = Parameter("t0", "1 d", frozen=True)
[docs] @staticmethod
def evaluate(time, alpha, t_ref, t0=1 * u.day):
"""Evaluate at given times"""
return np.power((time - t_ref) / t0, alpha)
[docs] def integral(self, t_min, t_max):
"""Evaluate the integrated flux within the given time intervals
Parameters
----------
t_min: `~astropy.time.Time`
Start times of observation
t_max: `~astropy.time.Time`
Stop times of observation
Returns
-------
norm : float
Integrated flux norm on the given time intervals
"""
pars = self.parameters
alpha = pars["alpha"].quantity
t0 = pars["t0"].quantity
t_ref = Time(pars["t_ref"].quantity, format="mjd")
if alpha != -1:
value = self.evaluate(t_max, alpha + 1.0, t_ref, t0) - self.evaluate(
t_min, alpha + 1.0, t_ref, t0
)
return t0 / (alpha + 1.0) * value / self.time_sum(t_min, t_max)
else:
value = np.log((t_max - t_ref) / (t_min - t_ref))
return t0 * value / self.time_sum(t_min, t_max)
[docs]class SineTemporalModel(TemporalModel):
"""Temporal model with a sinusoidal modulation.
For more information see :ref:`sine-temporal-model`.
Parameters
----------
amp : float
Amplitude of the sinusoidal function
t_ref: `~astropy.units.Quantity`
The reference time in mjd.
omega: `~astropy.units.Quantity`
Pulsation of the signal.
"""
tag = ["SineTemporalModel", "sinus"]
amp = Parameter("amp", 1.0, frozen=False)
omega = Parameter("omega", "1. rad/day", frozen=False)
_t_ref_default = Time("2000-01-01")
t_ref = Parameter("t_ref", _t_ref_default.mjd, unit="day", frozen=False)
[docs] @staticmethod
def evaluate(time, amp, omega, t_ref):
"""Evaluate at given times"""
return 1.0 + amp * np.sin(omega * (time - t_ref))
[docs] def integral(self, t_min, t_max):
"""Evaluate the integrated flux within the given time intervals
Parameters
----------
t_min: `~astropy.time.Time`
Start times of observation
t_max: `~astropy.time.Time`
Stop times of observation
Returns
-------
norm : float
Integrated flux norm on the given time intervals
"""
pars = self.parameters
omega = pars["omega"].quantity.to_value("rad/day")
amp = pars["amp"].value
t_ref = Time(pars["t_ref"].quantity, format="mjd")
value = (t_max - t_min) - amp / omega * (
np.sin(omega * (t_max - t_ref).to_value("day"))
- np.sin(omega * (t_min - t_ref).to_value("day"))
)
return value / self.time_sum(t_min, t_max)