Source code for gammapy.astro.population.velocity

# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Pulsar velocity distribution models"""
from __future__ import absolute_import, division, print_function, unicode_literals
from collections import OrderedDict
import numpy as np
from astropy.modeling import Fittable1DModel, Parameter
from astropy.units import Quantity

__all__ = [
    'FaucherKaspi2006VelocityMaxwellian',
    'FaucherKaspi2006VelocityBimodal',
    'Paczynski1990Velocity',
    'velocity_distributions',
    'VMIN', 'VMAX',
]

# Simulation range used for random number drawing
VMIN, VMAX = Quantity([0, 4000], 'km/s')


[docs]class FaucherKaspi2006VelocityMaxwellian(Fittable1DModel): """Maxwellian pulsar velocity distribution. .. math :: f(v) = A \\sqrt{ \\frac{2}{\\pi}} \\frac{v ^ 2}{\\sigma ^ 3 } \\exp \\left(-\\frac{v ^ 2}{2 \\sigma ^ 2} \\right) Reference: http://adsabs.harvard.edu/abs/2006ApJ...643..332F Parameters ---------- amplitude : float Value of the integral sigma : float Velocity parameter (km s^-1) """ amplitude = Parameter() sigma = Parameter() def __init__(self, amplitude=1, sigma=265, **kwargs): super(FaucherKaspi2006VelocityMaxwellian, self).__init__(amplitude=amplitude, sigma=sigma, **kwargs) @staticmethod
[docs] def evaluate(v, amplitude, sigma): """One dimensional Faucher-Guigere & Kaspi 2006 velocity model function""" term1 = np.sqrt(2 / np.pi) * v ** 2 / sigma ** 3 term2 = np.exp(-v ** 2 / (2 * sigma ** 2)) return term1 * term2
[docs]class FaucherKaspi2006VelocityBimodal(Fittable1DModel): """Bimodal pulsar velocity distribution - Faucher & Kaspi (2006). .. math :: f(v) = A\\sqrt{\\frac{2}{\\pi}} v^2 \\left[\\frac{w}{\\sigma_1^3} \\exp \\left(-\\frac{v^2}{2\\sigma_1^2} \\right) + \\frac{1-w}{\\sigma_2^3} \\exp \\left(-\\frac{v^2}{2\\sigma_2^2} \\right) \\right] Reference: http://adsabs.harvard.edu/abs/2006ApJ...643..332F (Formula (7)) Parameters ---------- amplitude : float Value of the integral sigma1 : float See model formula sigma2 : float See model formula w : float See model formula """ amplitude = Parameter() sigma_1 = Parameter() sigma_2 = Parameter() w = Parameter() def __init__(self, amplitude=1, sigma_1=160, sigma_2=780, w=0.9, **kwargs): super(FaucherKaspi2006VelocityBimodal, self).__init__(amplitude=amplitude, sigma_1=sigma_1, sigma_2=sigma_1, w=w, **kwargs) @staticmethod
[docs] def evaluate(v, amplitude, sigma_1, sigma_2, w): """One dimensional Faucher-Guigere & Kaspi 2006 velocity model function.""" A = amplitude * np.sqrt(2 / np.pi) * v ** 2 term1 = (w / sigma_1 ** 3) * np.exp(-v ** 2 / (2 * sigma_1 ** 2)) term2 = (1 - w) / sigma_2 ** 3 * np.exp(-v ** 2 / (2 * sigma_2 ** 2)) return A * (term1 + term2)
[docs]class Paczynski1990Velocity(Fittable1DModel): """Distribution by Lyne 1982 and adopted by Paczynski and Faucher. .. math :: f(v) = A\\frac{4}{\\pi} \\frac{1}{v_{0} \\left[1 + (v / v_{0}) ^ 2 \\right] ^ 2} Reference: http://adsabs.harvard.edu/abs/1990ApJ...348..485P (Formula (3)) Parameters ---------- amplitude : float Value of the integral v_0 : float Velocity parameter (km s^-1) """ amplitude = Parameter() v_0 = Parameter() def __init__(self, amplitude=1, v_0=560, **kwargs): super(Paczynski1990Velocity, self).__init__(amplitude=amplitude, v_0=v_0, **kwargs) @staticmethod
[docs] def evaluate(v, amplitude, v_0): """One dimensional Paczynski 1990 velocity model function.""" return amplitude * 4. / (np.pi * v_0 * (1 + (v / v_0) ** 2) ** 2)
velocity_distributions = OrderedDict() """Dictionary of available distributions. Useful for automatic processing. """ velocity_distributions['H05'] = FaucherKaspi2006VelocityMaxwellian velocity_distributions['F06B'] = FaucherKaspi2006VelocityBimodal velocity_distributions['F06P'] = Paczynski1990Velocity