Source code for gammapy.catalog.fermi

# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""Fermi catalog and source classes.
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import tarfile
import numpy as np
from astropy.io import fits
import astropy.units as u
from astropy.table import QTable, Table
from astropy.time import Time
from astropy.utils.data import download_file
from astropy.tests.helper import ignore_warnings
from ..utils.scripts import make_path
from ..utils.energy import EnergyBounds
from ..utils.table import table_standardise
from ..image import SkyImage
from ..spectrum import (
    FluxPoints,
    compute_flux_points_dnde
)
from ..spectrum.models import (
    PowerLaw,
    PowerLaw2,
    ExponentialCutoffPowerLaw3FGL,
    PLSuperExpCutoff3FGL,
    LogParabola,
)
from ..time import LightCurve
from .core import SourceCatalog, SourceCatalogObject

__all__ = [
    'SourceCatalogObject3FGL',
    'SourceCatalogObject1FHL',
    'SourceCatalogObject2FHL',
    'SourceCatalogObject3FHL',
    'SourceCatalog3FGL',
    'SourceCatalog1FHL',
    'SourceCatalog2FHL',
    'SourceCatalog3FHL',
    'fetch_fermi_catalog',
    'fetch_fermi_extended_sources',
]


[docs]class SourceCatalogObject3FGL(SourceCatalogObject): """One source from the Fermi-LAT 3FGL catalog. Catalog is represented by `~gammapy.catalog.SourceCatalog3FGL`. """ _ebounds = EnergyBounds([100, 300, 1000, 3000, 10000, 100000], 'MeV') _ebounds_suffix = ['100_300', '300_1000', '1000_3000', '3000_10000', '10000_100000'] energy_range = u.Quantity([100, 100000], 'MeV') """Energy range of the catalog. Paper says that analysis uses data up to 300 GeV, but results are all quoted up to 100 GeV only to be consistent with previous catalogs. """ def __str__(self, info='all'): """Summary info string. Parameters ---------- info : {'all', 'basic', 'position', 'spectral', 'lightcurve'} Comma separated list of options """ if info == 'all': info = 'basic,position,spectral,lightcurve' ss = '' ops = info.split(',') if 'basic' in ops: ss += self._info_basic() if 'position' in ops: ss += self._info_position() if 'spectral' in ops: ss += self._info_spectral_fit() ss += self._info_spectral_points() if 'lightcurve' in ops: ss += self._info_lightcurve() return ss def _info_basic(self): """Print basic info.""" d = self.data ss = '\n*** Basic info ***\n\n' ss += '{:<30s} : {}\n'.format('Source', d['Source_Name']) ss += '{:<30s} : {}\n'.format('Catalog row index (zero-based)', d['catalog_row_index']) ss += '{:<30s} : {}\n'.format('Extended name', d['Extended_Source_Name']) def get_nonentry_keys(keys): vals = [d[_].strip() for _ in keys] return ', '.join([_ for _ in vals if _ != '']) keys = ['ASSOC1', 'ASSOC2', 'ASSOC_TEV', 'ASSOC_GAM1', 'ASSOC_GAM2', 'ASSOC_GAM3'] associations = get_nonentry_keys(keys) ss += '{:<30s} : {}\n'.format('Associations', associations) keys = ['0FGL_Name', '1FGL_Name', '2FGL_Name', '1FHL_Name'] other_names = get_nonentry_keys(keys) ss += '{:<30s} : {}\n'.format('Other names', other_names) ss += '{:<30s} : {}\n'.format('Class', d['CLASS1']) tevcat_flag = d['TEVCAT_FLAG'] if tevcat_flag == 'N': tevcat_message = 'No TeV association' elif tevcat_flag == 'P': tevcat_message = 'Small TeV source' elif tevcat_flag == 'E': tevcat_message = 'Extended TeV source (diameter > 40 arcmins)' else: tevcat_message = 'N/A' ss += '{:<30s} : {}\n'.format('TeVCat flag', tevcat_message) flag_message = { 0: 'None', 1: 'Source with TS > 35 which went to TS < 25 when changing the diffuse model. Note that sources with TS < ' '35 are not flagged with this bit because normal statistical fluctuations can push them to TS < 25.', 3: 'Flux (> 1 GeV) or energy flux (> 100 MeV) changed by more than 3 sigma when changing the diffuse model.' ' Requires also that the flux change by more than 35% (to not flag strong sources).', 4: 'Source-to-background ratio less than 10% in highest band in which TS > 25. Background is integrated ' 'over the 68%-confidence area (pi*r_682) or 1 square degree, whichever is smaller.', 5: 'Closer than theta_ref from a brighter neighbor, where theta_ref is defined in the highest band in which' ' source TS > 25, or the band with highest TS if all are < 25. theta_ref is set to 2.17 degrees (FWHM)' ' below 300 MeV, 1.38 degrees between 300 MeV and 1 GeV, 0.87 degrees between 1 GeV and 3 GeV, 0.67' ' degrees between 3 and 10 GeV and 0.45 degrees about 10 GeV (2*r_68).', 6: 'On top of an interstellar gas clump or small-scale defect in the model of diffuse emission. This flag ' 'is equivalent to the "c" suffix in the source name.', 7: 'Unstable position determination; result from gtfindsrc outside the 95% ellipse from pointlike.', 9: 'Localization Quality > 8 in pointlike (see Section 3.1 in catalog paper) or long axis of 95% ellipse >' ' 0.25.', 10: 'Spectral Fit Quality > 16.3 (see Equation 3 in 2FGL catalog paper).', 11: 'Possibly due to the Sun (see Section 3.6 in catalog paper).', 12: 'Highly curved spectrum; LogParabola beta fixed to 1 or PLExpCutoff Spectral Index fixed to 0 (see ' 'Section 3.3 in catalog paper).' } ss += '{:<30s} : {}\n'.format('Other flags', flag_message.get(d['Flags'], 'N/A')) return ss def _info_position(self): """Print position info.""" d = self.data ss = '\n*** Position info ***\n\n' ss += '{:<20s} : {:.3f} deg\n'.format('RA', d['RAJ2000']) ss += '{:<20s} : {:.3f} deg\n'.format('DEC', d['DEJ2000']) ss += '{:<20s} : {:.3f} deg\n'.format('GLON', d['GLON']) ss += '{:<20s} : {:.3f} deg\n'.format('GLAT', d['GLAT']) ss += '\n' ss += '{:<20s} : {:.4f} deg\n'.format('Semimajor (68%)', d['Conf_68_SemiMajor']) ss += '{:<20s} : {:.4f} deg\n'.format('Semiminor (68%)', d['Conf_68_SemiMinor']) ss += '{:<20s} : {:.2f} deg\n'.format('Position angle (68%)', d['Conf_68_PosAng']) ss += '{:<20s} : {:.4f} deg\n'.format('Semimajor (95%)', d['Conf_95_SemiMajor']) ss += '{:<20s} : {:.4f} deg\n'.format('Semiminor (95%)', d['Conf_95_SemiMinor']) ss += '{:<20s} : {:.2f} deg\n'.format('Position angle (95%)', d['Conf_95_PosAng']) ss += '{:<20s} : {:.0f}\n'.format('ROI number', d['ROI_num']) return ss def _info_spectral_fit(self): """Print spectral info.""" d = self.data ss = '\n*** Spectral info ***\n\n' ss += '{:<45s} : {}\n'.format('Spectrum type', d['SpectrumType']) fmt = '{:<45s} : {:.3f}\n' args = ('Detection significance (100 MeV - 300 GeV)', d['Signif_Avg']) ss += fmt.format(*args) ss += '{:<45s} : {:.1f}\n'.format('Significance curvature', d['Signif_Curve']) spec_type = d['SpectrumType'].strip() if spec_type == 'LogParabola': ss += '{:<45s} : {} +- {}\n'.format('beta', d['beta'], d['Unc_beta']) if spec_type in ['PLExpCutoff', 'PlSuperExpCutoff']: ss += '{:<45s} : {:.0f} +- {:.0f} MeV\n'.format('Cutoff energy', d['Cutoff'], d['Unc_Cutoff']) if spec_type == 'PLSuperExpCutoff': ss += '{:<45s} : {} +- {}\n'.format('Exponential index', d['Exp_Index'], d['Unc_Exp_Index']) ss += '{:<45s} : {:.0f} MeV\n'.format('Pivot energy', d['Pivot_Energy']) ss += '{:<45s} : {:.3f}\n'.format('Power law index', d['PowerLaw_Index']) fmt = '{:<45s} : {:.3f} +- {:.3f}\n' args = ('Spectral index', d['Spectral_Index'], d['Unc_Spectral_Index']) ss += fmt.format(*args) fmt = '{:<45s} : {:.3} +- {:.3} cm^-2 MeV^-1 s^-1\n' args = ('Flux Density at pivot energy', d['Flux_Density'], d['Unc_Flux_Density']) ss += fmt.format(*args) fmt = '{:<45s} : {:.3} +- {:.3} cm^-2 s^-1\n' args = ('Integral flux (1 - 100 GeV)', d['Flux1000'], d['Unc_Flux1000']) ss += fmt.format(*args) fmt = '{:<45s} : {:.3} +- {:.3} erg cm^-2 s^-1\n' args = ('Energy flux (100 MeV - 100 GeV)', d['Energy_Flux100'], d['Unc_Energy_Flux100']) ss += fmt.format(*args) return ss def _info_spectral_points(self): d = self.data ss = '\n*** Spectral points ***\n\n' ss += '{:<15} {:<35} {:<25} {:<20}\n'.format('Energy range', 'Integral flux', 'Energy flux', 'Sqrt Test Statistic') flux_table = { '100-300 MeV': [ '{:.3} +- {:.3} cm^-2 s^-1'.format(d['Flux100_300'], d['Unc_Flux100_300'][1]), '{:.3} erg cm^-2 s^-1'.format(d['nuFnu100_300']), '{:.1f}'.format(d['Sqrt_TS100_300']) ], '0.3-1 GeV': [ '{:.3} +- {:.3} cm^-2 s^-1'.format(d['Flux300_1000'], d['Unc_Flux300_1000'][1]), '{:.3} erg cm^-2 s^-1'.format(d['nuFnu300_1000']), '{:.1f}'.format(d['Sqrt_TS300_1000']) ], '1-3 GeV': [ '{:.3} +- {:.3} cm^-2 s^-1'.format(d['Flux1000_3000'], d['Unc_Flux1000_3000'][1]), '{:.3} erg cm^-2 s^-1'.format(d['nuFnu1000_3000']), '{:.1f}'.format(d['Sqrt_TS1000_3000']) ], '3-10 GeV': [ '{:.3} +- {:.3} cm^-2 s^-1'.format(d['Flux3000_10000'], d['Unc_Flux3000_10000'][1]), '{:.3} erg cm^-2 s^-1'.format(d['nuFnu3000_10000']), '{:.1f}'.format(d['Sqrt_TS3000_10000']) ], '10-100 GeV': [ '{:.3} +- {:.3} cm^-2 s^-1'.format(d['Flux10000_100000'], d['Unc_Flux10000_100000'][1]), '{:.3} erg cm^-2 s^-1'.format(d['nuFnu10000_100000']), '{:.1f}'.format(d['Sqrt_TS10000_100000']) ] } for k, v in flux_table.items(): flux, dist, sqrt = v ss += '{:<15} {:<35} {:<25} {:<20}\n'.format(k, flux, dist, sqrt) ss += '\n' return ss def _info_lightcurve(self): """Print lightcurve info.""" d = self.data ss = '\n*** Lightcurve info ***\n\n' ss += 'Lightcurve measured in the energy band: 100 MeV - 100 GeV\n\n' ss += '{:<40s} : {:.3f}\n'.format('Variability index', d['Variability_Index']) if d['Signif_Peak'] == np.nan: ss += '{:<40s} : {:.3f}\n'.format('Significance peak (100 MeV - 100 GeV)', d['Signif_Peak']) fmt = '{:<40s} : {:.3} +- {:.3} cm^-2 s^-1\n' args = ('Integral flux peak (100 MeV - 100 GeV)', d['Flux_Peak'], d['Unc_Flux_Peak']) ss += fmt.format(*args) # TODO: give time as UTC string, not MET ss += '{:<40s} : {:.3} s (Mission elapsed time)\n'.format('Time peak', d['Time_Peak']) peak_interval = d['Peak_Interval'].to('day').value ss += '{:<40s} : {:.3} day\n'.format('Peak interval', peak_interval) else: ss += '\nNo peak measured for this source.\n' # TODO: Add a lightcurve table with d['Flux_History'] and d['Unc_Flux_History'] return ss @property def spectral_model(self): """Best fit spectral model (`~gammapy.spectrum.SpectralModel`).""" spec_type = self.data['SpectrumType'].strip() pars, errs = {}, {} pars['amplitude'] = self.data['Flux_Density'] errs['amplitude'] = self.data['Unc_Flux_Density'] pars['reference'] = self.data['Pivot_Energy'] if spec_type == 'PowerLaw': pars['index'] = self.data['Spectral_Index'] * u.dimensionless_unscaled errs['index'] = self.data['Unc_Spectral_Index'] * u.dimensionless_unscaled model = PowerLaw(**pars) elif spec_type == 'PLExpCutoff': pars['index'] = self.data['Spectral_Index'] * u.dimensionless_unscaled pars['ecut'] = self.data['Cutoff'] errs['index'] = self.data['Unc_Spectral_Index'] * u.dimensionless_unscaled errs['ecut'] = self.data['Unc_Cutoff'] model = ExponentialCutoffPowerLaw3FGL(**pars) elif spec_type == 'LogParabola': pars['alpha'] = self.data['Spectral_Index'] * u.dimensionless_unscaled pars['beta'] = self.data['beta'] * u.dimensionless_unscaled errs['alpha'] = self.data['Unc_Spectral_Index'] * u.dimensionless_unscaled errs['beta'] = self.data['Unc_beta'] * u.dimensionless_unscaled model = LogParabola(**pars) elif spec_type == "PLSuperExpCutoff": # TODO: why convert to GeV here? Remove? pars['reference'] = pars['reference'].to('GeV') pars['index_1'] = self.data['Spectral_Index'] * u.dimensionless_unscaled pars['index_2'] = self.data['Exp_Index'] * u.dimensionless_unscaled pars['ecut'] = self.data['Cutoff'].to('GeV') errs['index_1'] = self.data['Unc_Spectral_Index'] * u.dimensionless_unscaled errs['index_2'] = self.data['Unc_Exp_Index'] * u.dimensionless_unscaled errs['ecut'] = self.data['Unc_Cutoff'].to('GeV') model = PLSuperExpCutoff3FGL(**pars) else: raise ValueError('Spectral model {} not available'.format(spec_type)) model.parameters.set_parameter_errors(errs) return model @property def flux_points(self): """Flux points (`~gammapy.spectrum.FluxPoints`).""" table = Table() table.meta['SED_TYPE'] = 'flux' e_ref = self._ebounds.log_centers table['e_ref'] = e_ref table['e_min'] = self._ebounds.lower_bounds table['e_max'] = self._ebounds.upper_bounds flux = self._get_flux_values('Flux') flux_err = self._get_flux_values('Unc_Flux') table['flux'] = flux table['flux_errn'] = np.abs(flux_err[:, 0]) table['flux_errp'] = flux_err[:, 1] nuFnu = self._get_flux_values('nuFnu', 'erg cm-2 s-1') table['eflux'] = nuFnu table['eflux_errn'] = np.abs(nuFnu * flux_err[:, 0] / flux) table['eflux_errp'] = nuFnu * flux_err[:, 1] / flux is_ul = np.isnan(table['flux_errn']) table['is_ul'] = is_ul # handle upper limits table['flux_ul'] = np.nan * flux_err.unit table['flux_ul'][is_ul] = table['flux_errp'][is_ul] for column in ['flux', 'flux_errp', 'flux_errn']: table[column][is_ul] = np.nan # handle upper limits table['eflux_ul'] = np.nan * nuFnu.unit table['eflux_ul'][is_ul] = table['eflux_errp'][is_ul] for column in ['eflux', 'eflux_errp', 'eflux_errn']: table[column][is_ul] = np.nan table['dnde'] = (nuFnu * e_ref ** -2).to('TeV-1 cm-2 s-1') return FluxPoints(table) def _get_flux_values(self, prefix, unit='cm-2 s-1'): values = [self.data[prefix + _] for _ in self._ebounds_suffix] return u.Quantity(values, unit) @property def lightcurve(self): """Lightcurve (`~gammapy.time.LightCurve`).""" flux = self.data['Flux_History'] # Flux error is given as asymmetric high/low flux_err_lo = self.data['Unc_Flux_History'][:, 0] flux_err_hi = self.data['Unc_Flux_History'][:, 1] # TODO: Change lightcurve class to support this, # then fill appropriately here # for now, we just use the mean flux_err = 0.5 * (-flux_err_lo + flux_err_hi) # Really the time binning is stored in a separate HDU in the FITS # catalog file called `Hist_Start`, with a single column `Hist_Start` # giving the time binning in MET (mission elapsed time) # This is not available here for now. # TODO: read that info in `SourceCatalog3FGL` and pass it down to the # `SourceCatalogObject3FGL` object somehow. # For now, we just hard-code the start and stop time and assume # equally-spaced time intervals. This is roughly correct, # for plotting the difference doesn't matter, only for analysis time_start = Time('2008-08-02T00:33:19') time_end = Time('2012-07-31T22:45:47') n_points = len(flux) time_step = (time_end - time_start) / n_points time_bounds = time_start + np.arange(n_points + 1) * time_step table = QTable() table['TIME_MIN'] = time_bounds[:-1] table['TIME_MAX'] = time_bounds[1:] table['FLUX'] = flux table['FLUX_ERR'] = flux_err lc = LightCurve(table) return lc
[docs]class SourceCatalogObject1FHL(SourceCatalogObject): """One source from the Fermi-LAT 1FHL catalog. Catalog is represented by `~gammapy.catalog.SourceCatalog1FHL`. """ _ebounds = EnergyBounds([10, 30, 100, 500], 'GeV') _ebounds_suffix = ['10_30', '30_100', '100_500'] energy_range = u.Quantity([0.01, 0.5], 'TeV') """Energy range of the Fermi 1FHL source catalog""" def __str__(self): """Print summary info.""" # TODO: can we share code with 3FGL summary function? d = self.data ss = 'Source: {}\n'.format(d['Source_Name']) ss += '\n' ss += 'RA (J2000) : {}\n'.format(d['RAJ2000']) ss += 'Dec (J2000) : {}\n'.format(d['DEJ2000']) ss += 'GLON : {}\n'.format(d['GLON']) ss += 'GLAT : {}\n'.format(d['GLAT']) ss += '\n' # val, err = d['Energy_Flux100'], d['Unc_Energy_Flux100'] # ss += 'Energy flux (100 MeV - 100 GeV) : {} +- {} erg cm^-2 s^-1\n'.format(val, err) # ss += 'Detection significance : {}\n'.format(d['Signif_Avg']) return ss def _get_flux_values(self, prefix, unit='cm-2 s-1'): values = [self.data[prefix + _ + 'GeV'] for _ in self._ebounds_suffix] return u.Quantity(values, unit) @property def flux_points(self): """Integral flux points (`~gammapy.spectrum.FluxPoints`).""" table = Table() table.meta['SED_TYPE'] = 'flux' table['e_min'] = self._ebounds.lower_bounds table['e_max'] = self._ebounds.upper_bounds table['flux'] = self._get_flux_values('Flux') flux_err = self._get_flux_values('Unc_Flux') table['flux_errn'] = np.abs(flux_err[:, 0]) table['flux_errp'] = flux_err[:, 1] # handle upper limits is_ul = np.isnan(table['flux_errn']) table['is_ul'] = is_ul table['flux_ul'] = np.nan * flux_err.unit table['flux_ul'][is_ul] = table['flux_errp'][is_ul] for column in ['flux', 'flux_errp', 'flux_errn']: table[column][is_ul] = np.nan flux_points = FluxPoints(table) flux_points_dnde = compute_flux_points_dnde( flux_points, model=self.spectral_model) return flux_points_dnde @property def spectral_model(self): """Best fit spectral model `~gammapy.spectrum.models.SpectralModel`.""" pars, errs = {}, {} pars['amplitude'] = self.data['Flux'] pars['emin'], pars['emax'] = self.energy_range pars['index'] = self.data['Spectral_Index'] * u.dimensionless_unscaled errs['amplitude'] = self.data['Unc_Flux'] errs['index'] = self.data['Unc_Spectral_Index'] * u.dimensionless_unscaled model = PowerLaw2(**pars) model.parameters.set_parameter_errors(errs) return model
[docs]class SourceCatalogObject2FHL(SourceCatalogObject): """One source from the Fermi-LAT 2FHL catalog. Catalog is represented by `~gammapy.catalog.SourceCatalog2FHL`. """ _ebounds = EnergyBounds([50, 171, 585, 2000], 'GeV') _ebounds_suffix = ['50_171', '171_585', '585_2000'] energy_range = u.Quantity([0.05, 2], 'TeV') """Energy range of the Fermi 2FHL source catalog""" def __str__(self): """Print summary info.""" # TODO: can we share code with 3FGL summary funtion? d = self.data ss = 'Source: {}\n'.format(d['Source_Name']) ss += '\n' ss += 'RA (J2000) : {}\n'.format(d['RAJ2000']) ss += 'Dec (J2000) : {}\n'.format(d['DEJ2000']) ss += 'GLON : {}\n'.format(d['GLON']) ss += 'GLAT : {}\n'.format(d['GLAT']) ss += '\n' # val, err = d['Energy_Flux100'], d['Unc_Energy_Flux100'] # ss += 'Energy flux (100 MeV - 100 GeV) : {} +- {} erg cm^-2 s^-1\n'.format(val, err) # ss += 'Detection significance : {}\n'.format(d['Signif_Avg']) return ss def _get_flux_values(self, prefix, unit='cm-2 s-1'): values = [self.data[prefix + _ + 'GeV'] for _ in self._ebounds_suffix] return u.Quantity(values, unit) @property def flux_points(self): """Integral flux points (`~gammapy.spectrum.FluxPoints`).""" table = Table() table.meta['SED_TYPE'] = 'flux' table['e_min'] = self._ebounds.lower_bounds table['e_max'] = self._ebounds.upper_bounds table['flux'] = self._get_flux_values('Flux') flux_err = self._get_flux_values('Unc_Flux') table['flux_errn'] = np.abs(flux_err[:, 0]) table['flux_errp'] = flux_err[:, 1] # handle upper limits is_ul = np.isnan(table['flux_errn']) table['is_ul'] = is_ul table['flux_ul'] = np.nan * flux_err.unit table['flux_ul'][is_ul] = table['flux_errp'][is_ul] for column in ['flux', 'flux_errp', 'flux_errn']: table[column][is_ul] = np.nan flux_points = FluxPoints(table) flux_points_dnde = compute_flux_points_dnde( flux_points, model=self.spectral_model) return flux_points_dnde @property def spectral_model(self): """Best fit spectral model (`~gammapy.spectrum.models.SpectralModel`).""" pars, errs = {}, {} pars['amplitude'] = self.data['Flux50'] pars['emin'], pars['emax'] = self.energy_range pars['index'] = self.data['Spectral_Index'] * u.dimensionless_unscaled errs['amplitude'] = self.data['Unc_Flux50'] errs['index'] = self.data['Unc_Spectral_Index'] * u.dimensionless_unscaled model = PowerLaw2(**pars) model.parameters.set_parameter_errors(errs) return model
[docs]class SourceCatalogObject3FHL(SourceCatalogObject): """One source from the Fermi-LAT 3FHL catalog. Catalog is represented by `~gammapy.catalog.SourceCatalog3FHL`. """ energy_range = u.Quantity([0.01, 2], 'TeV') """Energy range of the Fermi 1FHL source catalog""" _ebounds = EnergyBounds([10, 20, 50, 150, 500, 2000], 'GeV') def __str__(self): """Print summary info.""" d = self.data ss = 'Source: {}\n'.format(d['Source_Name']) ss += '\n' ss += 'RA (J2000) : {}\n'.format(d['RAJ2000']) ss += 'Dec (J2000) : {}\n'.format(d['DEJ2000']) ss += 'GLON : {}\n'.format(d['GLON']) ss += 'GLAT : {}\n'.format(d['GLAT']) ss += '\n' ss += 'Detection significance : {}\n'.format(d['Signif_Avg']) return ss @property def spectral_model(self): """Best fit spectral model (`~gammapy.spectrum.models.SpectralModel`).""" d = self.data spec_type = d['SpectrumType'].strip() pars, errs = {}, {} pars['amplitude'] = d['Flux_Density'] errs['amplitude'] = d['Unc_Flux_Density'] pars['reference'] = d['Pivot_Energy'] if spec_type == 'PowerLaw': pars['index'] = d['Spectral_Index'] * u.dimensionless_unscaled errs['index'] = d['Unc_Spectral_Index'] * u.dimensionless_unscaled model = PowerLaw(**pars) elif spec_type == 'LogParabola': pars['alpha'] = d['Spectral_Index'] * u.dimensionless_unscaled pars['beta'] = d['beta'] * u.dimensionless_unscaled errs['alpha'] = d['Unc_Spectral_Index'] * u.dimensionless_unscaled errs['beta'] = d['Unc_beta'] * u.dimensionless_unscaled model = LogParabola(**pars) else: raise ValueError('Spectral model {} not available'.format(spec_type)) model.parameters.set_parameter_errors(errs) return model @property def flux_points(self): """Flux points (`~gammapy.spectrum.FluxPoints`).""" table = Table() table.meta['SED_TYPE'] = 'flux' e_ref = self._ebounds.log_centers table['e_ref'] = e_ref table['e_min'] = self._ebounds.lower_bounds table['e_max'] = self._ebounds.upper_bounds flux = self.data['Flux_Band'] flux_err = self.data['Unc_Flux_Band'] e2dnde = self.data['nuFnu'] table['flux'] = flux table['flux_errn'] = np.abs(flux_err[:, 0]) table['flux_errp'] = flux_err[:, 1] table['eflux'] = e2dnde table['eflux_errn'] = np.abs(e2dnde * flux_err[:, 0] / flux) table['eflux_errp'] = e2dnde * flux_err[:, 1] / flux is_ul = np.isnan(table['flux_errn']) table['is_ul'] = is_ul # handle upper limits table['flux_ul'] = np.nan * flux_err.unit table['flux_ul'][is_ul] = table['flux_errp'][is_ul] for column in ['flux', 'flux_errp', 'flux_errn']: table[column][is_ul] = np.nan table['eflux_ul'] = np.nan * e2dnde.unit table['eflux_ul'][is_ul] = table['eflux_errp'][is_ul] for column in ['eflux', 'eflux_errp', 'eflux_errn']: table[column][is_ul] = np.nan # TODO: remove this computation here. # # Instead provide a method on the FluxPoints class like `to_dnde()` or something. table['dnde'] = (e2dnde * e_ref ** -2).to('cm-2 s-1 TeV-1') return FluxPoints(table)
[docs]class SourceCatalog3FGL(SourceCatalog): """Fermi-LAT 3FGL source catalog. One source is represented by `~gammapy.catalog.SourceCatalogObject3FGL`. """ name = '3fgl' description = 'LAT 4-year point source catalog' source_object_class = SourceCatalogObject3FGL def __init__(self, filename='$GAMMAPY_EXTRA/datasets/catalogs/fermi/gll_psc_v16.fit.gz'): filename = str(make_path(filename)) with ignore_warnings(): # ignore FITS units warnings table = Table.read(filename, hdu='LAT_Point_Source_Catalog') table_standardise(table) source_name_key = 'Source_Name' source_name_alias = ('Extended_Source_Name', '0FGL_Name', '1FGL_Name', '2FGL_Name', '1FHL_Name', 'ASSOC_TEV', 'ASSOC1', 'ASSOC2') super(SourceCatalog3FGL, self).__init__( table=table, source_name_key=source_name_key, source_name_alias=source_name_alias, ) self.extended_sources_table = Table.read(filename, hdu='ExtendedSources')
[docs]class SourceCatalog1FHL(SourceCatalog): """Fermi-LAT 1FHL source catalog. One source is represented by `~gammapy.catalog.SourceCatalogObject1FHL`. """ name = '1fhl' description = 'First Fermi-LAT Catalog of Sources above 10 GeV' source_object_class = SourceCatalogObject1FHL def __init__(self, filename='$GAMMAPY_EXTRA/datasets/catalogs/fermi/gll_psch_v07.fit.gz'): filename = str(make_path(filename)) with ignore_warnings(): # ignore FITS units warnings table = Table.read(filename, hdu='LAT_Point_Source_Catalog') table_standardise(table) source_name_key = 'Source_Name' source_name_alias = ('ASSOC1', 'ASSOC2', 'ASSOC_TEV', 'ASSOC_GAM') super(SourceCatalog1FHL, self).__init__( table=table, source_name_key=source_name_key, source_name_alias=source_name_alias, ) self.extended_sources_table = Table.read(filename, hdu='ExtendedSources')
[docs]class SourceCatalog2FHL(SourceCatalog): """Fermi-LAT 2FHL source catalog. One source is represented by `~gammapy.catalog.SourceCatalogObject2FHL`. """ name = '2fhl' description = 'LAT second high-energy source catalog' source_object_class = SourceCatalogObject2FHL def __init__(self, filename='$GAMMAPY_EXTRA/datasets/catalogs/fermi/gll_psch_v08.fit.gz'): filename = str(make_path(filename)) with ignore_warnings(): # ignore FITS units warnings table = Table.read(filename, hdu='2FHL Source Catalog') table_standardise(table) source_name_key = 'Source_Name' source_name_alias = ('ASSOC', '3FGL_Name', '1FHL_Name', 'TeVCat_Name') super(SourceCatalog2FHL, self).__init__( table=table, source_name_key=source_name_key, source_name_alias=source_name_alias, ) self.counts_image = SkyImage.read(filename, hdu='Count Map') self.extended_sources_table = Table.read(filename, hdu='Extended Sources') self.rois = Table.read(filename, hdu='ROIs')
[docs]class SourceCatalog3FHL(SourceCatalog): """Fermi-LAT 3FHL source catalog. One source is represented by `~gammapy.catalog.SourceCatalogObject3FHL`. """ name = '3fhl' description = 'LAT third high-energy source catalog' source_object_class = SourceCatalogObject3FHL def __init__(self, filename='$GAMMAPY_EXTRA/datasets/catalogs/fermi/gll_psch_v11.fit.gz'): filename = str(make_path(filename)) with ignore_warnings(): # ignore FITS units warnings table = Table.read(filename, hdu='LAT_Point_Source_Catalog') table_standardise(table) source_name_key = 'Source_Name' source_name_alias = ('ASSOC1', 'ASSOC2', 'ASSOC_TEV', 'ASSOC_GAM') super(SourceCatalog3FHL, self).__init__( table=table, source_name_key=source_name_key, source_name_alias=source_name_alias, ) self.extended_sources_table = Table.read(filename, hdu='ExtendedSources') self.rois = Table.read(filename, hdu='ROIs') self.energy_bounds_table = Table.read(filename, hdu='EnergyBounds')
def _is_galactic(source_class): """Re-group sources into rough categories. Categories: - 'galactic' - 'extra-galactic' - 'unknown' - 'other' Source identifications and associations are treated identically, i.e. lower-case and upper-case source classes are not distinguished. References: - Table 3 in 3FGL paper: http://adsabs.harvard.edu/abs/2015arXiv150102003T - Table 4 in the 1FHL paper: http://adsabs.harvard.edu/abs/2013ApJS..209...34A """ source_class = source_class.lower().strip() gal_classes = ['psr', 'pwn', 'snr', 'spp', 'lbv', 'hmb', 'hpsr', 'sfr', 'glc', 'bin', 'nov'] egal_classes = ['agn', 'agu', 'bzb', 'bzq', 'bll', 'gal', 'rdg', 'fsrq', 'css', 'sey', 'sbg', 'nlsy1', 'ssrq', 'bcu'] if source_class in gal_classes: return 'galactic' elif source_class in egal_classes: return 'extra-galactic' elif source_class == '': return 'unknown' else: raise ValueError('Unknown source class: {}'.format(source_class))
[docs]def fetch_fermi_catalog(catalog, extension=None): """Fetch Fermi catalog data. Reference: http://fermi.gsfc.nasa.gov/ssc/data/access/lat/. The Fermi catalogs contain the following relevant catalog HDUs: * 3FGL Catalog : LAT 4-year Point Source Catalog * ``LAT_Point_Source_Catalog`` Point Source Catalog Table. * ``ExtendedSources`` Extended Source Catalog Table. * 2FGL Catalog : LAT 2-year Point Source Catalog * ``LAT_Point_Source_Catalog`` Point Source Catalog Table. * ``ExtendedSources`` Extended Source Catalog Table. * 1FGL Catalog : LAT 1-year Point Source Catalog * ``LAT_Point_Source_Catalog`` Point Source Catalog Table. * 2FHL Catalog : Second Fermi-LAT Catalog of High-Energy Sources * ``Count Map`` AIT projection 2D count image * ``2FHL Source Catalog`` Main catalog * ``Extended Sources`` Extended Source Catalog Table * ``ROIs`` Regions of interest * 1FHL Catalog : First Fermi-LAT Catalog of Sources above 10 GeV * ``LAT_Point_Source_Catalog`` Point Source Catalog Table. * ``ExtendedSources`` Extended Source Catalog Table. * 2PC Catalog : LAT Second Catalog of Gamma-ray Pulsars * ``PULSAR_CATALOG`` Pulsar Catalog Table. * ``SPECTRAL`` Table of Pulsar Spectra Parameters. * ``OFF_PEAK`` Table for further Spectral and Flux data for the Catalog. Parameters ---------- catalog : {'3FGL', '2FGL', '1FGL', '1FHL', '2FHL', '2PC'} Specifies which catalog to display. extension : str Specifies which catalog HDU to provide as a table (optional). See list of catalog HDUs above. Returns ------- hdu_list (Default) : `~astropy.io.fits.HDUList` Catalog FITS HDU list (for access to full catalog dataset). catalog_table : `~astropy.table.Table` Catalog table for a selected hdu extension. Examples -------- >>> from gammapy.catalog import fetch_fermi_catalog >>> fetch_fermi_catalog('2FGL') [<astropy.io.fits.hdu.image.PrimaryHDU at 0x3330790>, <astropy.io.fits.hdu.table.BinTableHDU at 0x338b990>, <astropy.io.fits.hdu.table.BinTableHDU at 0x3396450>, <astropy.io.fits.hdu.table.BinTableHDU at 0x339af10>, <astropy.io.fits.hdu.table.BinTableHDU at 0x339ff10>] >>> from gammapy.catalog import fetch_fermi_catalog >>> fetch_fermi_catalog('2FGL', 'LAT_Point_Source_Catalog') <Table rows=1873 names= ... > """ BASE_URL = 'http://fermi.gsfc.nasa.gov/ssc/data/access/lat/' if catalog == '3FGL': url = BASE_URL + '4yr_catalog/gll_psc_v16.fit' elif catalog == '2FGL': url = BASE_URL + '2yr_catalog/gll_psc_v08.fit' elif catalog == '1FGL': url = BASE_URL + '1yr_catalog/gll_psc_v03.fit' elif catalog == '1FHL': url = BASE_URL + '1FHL/gll_psch_v07.fit' elif catalog == '2FHL': url = 'https://github.com/gammapy/gammapy-extra/raw/master/datasets/catalogs/fermi/gll_psch_v08.fit.gz' elif catalog == '2PC': url = BASE_URL + '2nd_PSR_catalog/2PC_catalog_v03.fits' else: ss = 'Invalid catalog: {0}\n'.format(catalog) raise ValueError(ss) filename = download_file(url, cache=True) hdu_list = fits.open(filename) if extension is None: return hdu_list # TODO: 2FHL doesn't have a 'CLASS1' column, just 'CLASS' # It's probably better if we make a `SourceCatalog` class # and then sub-class `FermiSourceCatalog` and `Fermi2FHLSourceCatalog` # and handle catalog-specific stuff in these classes, # trying to provide an as-uniform as possible API to the common catalogs. table = Table(hdu_list[extension].data) table['IS_GALACTIC'] = [_is_galactic(_) for _ in table['CLASS1']] return table
[docs]def fetch_fermi_extended_sources(catalog): """Fetch Fermi catalog extended source images. Reference: http://fermi.gsfc.nasa.gov/ssc/data/access/lat/. Extended source are available for the following Fermi catalogs: * 3FGL Catalog : LAT 4-year Point Source Catalog * 2FGL Catalog : LAT 2-year Point Source Catalog * 1FHL Catalog : First Fermi-LAT Catalog of Sources above 10 GeV Parameters ---------- catalog : {'3FGL', '2FGL', '1FHL'} Specifies which catalog extended sources to return. Returns ------- hdu_list : `~astropy.io.fits.HDUList` FITS HDU list of FITS ImageHDUs for the extended sources. Examples -------- >>> from gammapy.catalog import fetch_fermi_extended_sources >>> sources = fetch_fermi_extended_sources('2FGL') >>> len(sources) 12 """ BASE_URL = 'http://fermi.gsfc.nasa.gov/ssc/data/access/lat/' if catalog == '3FGL': url = BASE_URL + '4yr_catalog/LAT_extended_sources_v15.tgz' elif catalog == '2FGL': url = BASE_URL + '2yr_catalog/gll_psc_v07_templates.tgz' elif catalog == '1FHL': url = BASE_URL + '1FHL/LAT_extended_sources_v12.tar' else: ss = 'Invalid catalog: {0}\n'.format(catalog) raise ValueError(ss) filename = download_file(url, cache=True) tar = tarfile.open(filename, 'r') hdu_list = [] for member in tar.getmembers(): if member.name.endswith(".fits"): file = tar.extractfile(member) hdu = fits.open(file)[0] hdu_list.append(hdu) hdu_list = fits.HDUList(hdu_list) return hdu_list