Source code for gammapy.image.core

# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import absolute_import, division, print_function, unicode_literals
import abc
import logging
from subprocess import call
from tempfile import NamedTemporaryFile
from copy import deepcopy
from collections import OrderedDict, namedtuple
import numpy as np
from numpy.lib.arraypad import _validate_lengths
from astropy.extern import six
from astropy.io import fits
from astropy.coordinates import SkyCoord, Angle
from astropy.coordinates.angle_utilities import angular_separation
from astropy.convolution import Tophat2DKernel
from astropy import units as u
from astropy.nddata.utils import Cutout2D
from regions import PixCoord, PixelRegion, SkyRegion
from astropy.wcs import WCS, WcsError
from astropy.wcs.utils import pixel_to_skycoord, skycoord_to_pixel, proj_plane_pixel_scales
from ..utils.fits import SmartHDUList, fits_header_to_meta_dict
from ..utils.scripts import make_path
from ..utils.wcs import get_resampled_wcs
from ..image.utils import make_header

__all__ = ['SkyImage']

log = logging.getLogger(__name__)

_DEFAULT_WCS_ORIGIN = 0
_DEFAULT_WCS_MODE = 'all'


@six.add_metaclass(abc.ABCMeta)
class MapBase(object):
    """Map base class.

    This is just a temp solution to put code that's common
    between `SkyImage` and `SkyCube`.
    """

    @property
    def is_mask(self):
        """Is this a mask (check values, not dtype).

        """
        if self.data.dtype == bool:
            return True

        d = self.data
        mask = (d == 0) | (d == 1)
        return mask.all()

    def _check_is_mask(self):
        if not self.is_mask:
            raise ValueError('This method is only available for masks.')


[docs]class SkyImage(MapBase): """ Sky image. For a usage example see :gp-extra-notebook:`image_analysis` Parameters ---------- name : str Name of the image. data : `~numpy.ndarray` Data array. wcs : `~astropy.wcs.WCS` WCS transformation object. unit : str String specifying the data units. meta : `~collections.OrderedDict` Dictionary to store meta data. """ _AxisIndex = namedtuple('AxisIndex', ['x', 'y']) _ax_idx = _AxisIndex(x=1, y=0) def __init__(self, name=None, data=None, wcs=None, unit='', meta=None): # TODO: validate inputs self.name = name self.data = data self.wcs = wcs if meta is None: self.meta = OrderedDict() else: self.meta = OrderedDict(meta) self.unit = u.Unit(unit) @property def center_pix(self): """Center pixel coordinate of the image (`~regions.PixCoord`).""" x = 0.5 * (self.data.shape[self._ax_idx.x] - 1) y = 0.5 * (self.data.shape[self._ax_idx.y] - 1) return PixCoord(x=x, y=y) @property def center(self): """Center sky coordinate of the image (`~astropy.coordinates.SkyCoord`).""" center = self.center_pix return SkyCoord.from_pixel( xp=center.x, yp=center.y, wcs=self.wcs, origin=_DEFAULT_WCS_ORIGIN, mode=_DEFAULT_WCS_MODE, ) @classmethod
[docs] def read(cls, filename, hdu=None, **kwargs): """Read image from FITS file (`SkyImage`). Parameters are passed to `~gammapy.utils.fits.SmartHDUList`. """ hdu_list = SmartHDUList.open(filename, **kwargs) hdu = hdu_list.get_hdu(hdu=hdu, hdu_type='image') return cls.from_image_hdu(hdu)
[docs] def write(self, filename, *args, **kwargs): """ Write image to FITS file. Parameters ---------- filename : str Name of the FITS file. *args : list Arguments passed to `~astropy.fits.ImageHDU.writeto`. **kwargs : dict Keyword arguments passed to `~astropy.fits.ImageHDU.writeto`. """ filename = str(make_path(filename)) hdu = self.to_image_hdu() hdu.writeto(filename, *args, **kwargs)
@classmethod
[docs] def from_image_hdu(cls, image_hdu): """ Create image from ImageHDU. Parameters ---------- image_hdu : `astropy.io.fits.ImageHDU` Source image HDU. Examples -------- >>> from astropy.io import fits >>> from gammapy.image import SkyImage >>> hdu_list = fits.open('data.fits') >>> image = SkyImage.from_image_hdu(hdu_list['myimage']) """ data = image_hdu.data header = image_hdu.header wcs = WCS(image_hdu.header) name = header.get('HDUNAME') if name is None: name = header.get('EXTNAME') try: # Validate unit string unit = u.Unit(header['BUNIT'], format='fits').to_string() except (KeyError, ValueError): unit = '' meta = fits_header_to_meta_dict(header) obj = cls(name, data, wcs, unit, meta) # For now, we give the user a copy of the header as a # private, undocumented attribute, because it's sometimes # useful to have. obj._header = header return obj
[docs] def to_image_hdu(self): """ Convert image to a `~astropy.io.fits.PrimaryHDU`. Returns ------- hdu : `~astropy.io.fits.PrimaryHDU` Primary image hdu object. """ header = fits.Header() header.update(self.meta) if self.wcs is not None: # update wcs, because it could have changed header_wcs = self.wcs.to_header() header.update(header_wcs) if self.unit is not None: header['BUNIT'] = u.Unit(self.unit).to_string('fits') if self.name is not None: header['EXTNAME'] = self.name header['HDUNAME'] = self.name return fits.PrimaryHDU(data=self.data, header=header)
@classmethod
[docs] def empty(cls, name=None, nxpix=200, nypix=200, binsz=0.02, xref=0, yref=0, fill=0, proj='CAR', coordsys='GAL', xrefpix=None, yrefpix=None, dtype='float64', unit='', meta=None): """ Create an empty image from scratch. Uses the same parameter names as the Fermi tool gtbin (see http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtbin.txt). If no reference pixel position is given it is assumed to be at the center of the image. Parameters ---------- name : str Name of the image. nxpix : int, optional Number of pixels in x axis. Default is 200. nypix : int, optional Number of pixels in y axis. Default is 200. binsz : float, optional Bin size for x and y axes in units of degrees. Default is 0.02. xref : float, optional Coordinate system value at reference pixel for x axis. Default is 0. yref : float, optional Coordinate system value at reference pixel for y axis. Default is 0. fill : float, optional Fill image with constant value. Default is 0. proj : string, optional Any valid WCS projection type. Default is 'CAR' (cartesian). coordsys : {'CEL', 'GAL'}, optional Coordinate system, either Galactic ('GAL') or Equatorial ('CEL'). Default is 'GAL' (Galactic). xrefpix : float, optional Coordinate system reference pixel for x axis. Default is None. yrefpix: float, optional Coordinate system reference pixel for y axis. Default is None. dtype : str, optional Data type, default is float32 unit : str or `~astropy.units.Unit` Data unit. meta : `~collections.OrderedDict` Meta data attached to the image. Returns ------- image : `~gammapy.image.SkyImage` Empty image. """ header = make_header(nxpix, nypix, binsz, xref, yref, proj, coordsys, xrefpix, yrefpix) data = fill * np.ones((nypix, nxpix), dtype=dtype) wcs = WCS(header) return cls(name=name, data=data, wcs=wcs, unit=unit, meta=header)
@classmethod
[docs] def empty_like(cls, image, name=None, unit='', fill=0, meta=None): """ Create an empty image like the given image. The WCS is copied over, the data array is filled with the ``fill`` value. Parameters ---------- image : `~gammapy.image.SkyImage` or `~astropy.io.fits.ImageHDU` Instance of `~gammapy.image.SkyImage`. fill : float, optional Fill image with constant value. Default is 0. name : str Name of the image. unit : str String specifying the data units. meta : `~collections.OrderedDict` Dictionary to store meta data. """ if isinstance(image, SkyImage): wcs = image.wcs.copy() elif isinstance(image, (fits.ImageHDU, fits.PrimaryHDU)): wcs = WCS(image.header) else: raise TypeError("Can't create image from type {}".format(type(image))) data = fill * np.ones_like(image.data) return cls(name, data, wcs, unit, meta=wcs.to_header())
[docs] def fill_events(self, events, weights=None): """Fill events (modifies ``data`` attribute). Calls `numpy.histogramdd` Parameters ---------- events : `~gammapy.data.EventList` Event list weights : str, optional Column to use as weights (none by default) Examples -------- Show example how to make an empty image and fill it. """ if weights is not None: weights = events.table[weights] xx, yy = self.wcs_skycoord_to_pixel(events.radec) bins = self._bins_pix data = np.histogramdd([yy, xx], bins, weights=weights)[0] self.data = self.data + data
@property def _bins_pix(self): bins0 = np.arange(self.data.shape[0] + 1) - 0.5 bins1 = np.arange(self.data.shape[1] + 1) - 0.5 return bins0, bins1
[docs] def coordinates_pix(self, mode='center'): """ Pixel sky coordinate images. Parameters ---------- mode : {'center', 'edges'} Return coordinate values at the pixels edges or pixel centers. Returns ------- x, y : tuple Return arrays representing the coordinates of a sky grid. """ if mode == 'center': y, x = np.indices(self.data.shape) elif mode == 'edges': shape = self.data.shape[0] + 1, self.data.shape[1] + 1 y, x = np.indices(shape) y, x = y - 0.5, x - 0.5 else: raise ValueError('Invalid mode to compute coordinates.') return PixCoord(x, y)
[docs] def coordinates(self, mode='center'): """ Sky coordinate images. Parameters ---------- mode : {'center', 'edges'} Return coordinate values at the pixels edges or pixel centers. Returns ------- coordinates : `~astropy.coordinates.SkyCoord` Position on the sky. """ pixcoord = self.coordinates_pix(mode=mode) coordinates = self.wcs_pixel_to_skycoord(xp=pixcoord.x, yp=pixcoord.y) return coordinates
[docs] def contains(self, position): """ Check if given position on the sky is contained in the image. Parameters ---------- position : `~astropy.coordinates.SkyCoord` Position on the sky. Returns ------- containment : array Bool array """ ny, nx = self.data.shape x, y = self.wcs_skycoord_to_pixel(coords=position) return (x >= 0.5) & (x <= nx + 0.5) & (y >= 0.5) & (y <= ny + 0.5)
[docs] def footprint(self, mode='edges'): """ Footprint of the image on the sky. Parameters ---------- mode : {'center', 'edges'} Use corner pixel centers or corners? Returns ------- coordinates : `~collections.OrderedDict` Dictionary of the positions of the corners of the image with keys {'lower left', 'upper left', 'upper right', 'lower right'} and `~astropy.coordinates.SkyCoord` objects as values. Examples -------- >>> from gammapy.image import SkyImage >>> image = SkyImage.empty(nxpix=3, nypix=2) >>> coord = image.footprint(mode='corner') >>> coord['lower left'] <SkyCoord (Galactic): (l, b) in deg (0.03, -0.02)> """ naxis2, naxis1 = self.data.shape if mode == 'center': pixcoord = [(0, 0), (0, naxis2), (naxis1, naxis2), (naxis1, 0)] elif mode == 'edges': pixcoord = [(-0.5, -0.5), (-0.5, naxis2 + 0.5), (naxis1 + 0.5, naxis2 + 0.5), (naxis1 + 0.5, -0.5)] else: raise ValueError('Invalid mode: {}'.format(mode)) footprint = OrderedDict() keys = ['lower left', 'upper left', 'upper right', 'lower right'] for key, (x, y) in zip(keys, pixcoord): footprint[key] = self.wcs_pixel_to_skycoord(xp=x, yp=y) width_low = footprint['lower left'].separation(footprint['lower right']) width_up = footprint['upper left'].separation(footprint['upper right']) footprint['width'] = Angle([width_low, width_up]).max() height_left = footprint['lower left'].separation(footprint['upper left']) height_right = footprint['lower right'].separation(footprint['upper right']) footprint['height'] = Angle([height_right, height_left]).max() footprint['center'] = self.center return footprint
def _get_boundaries(self, image_ref, image, wcs_check): """Boundary pixel coordinates on another reference image. """ ymax, xmax = image.data.shape ymax_ref, xmax_ref = image_ref.data.shape # transform boundaries in world coordinates bounds = image.wcs.wcs_pix2world([0, xmax], [0, ymax], _DEFAULT_WCS_ORIGIN) # transform to pixel coordinats in the reference image bounds_ref = image_ref.wcs.wcs_world2pix(bounds[0], bounds[1], _DEFAULT_WCS_ORIGIN) # round to nearest integer and clip at the boundaries xlo, xhi = np.rint(np.clip(bounds_ref[0], 0, xmax_ref)).astype('int') ylo, yhi = np.rint(np.clip(bounds_ref[1], 0, ymax_ref)).astype('int') if wcs_check: if not np.allclose(bounds_ref, np.rint(bounds_ref)): raise WcsError('World coordinate systems not aligned. Try to call' ' .reproject() on one of the images first.') return xlo, xhi, ylo, yhi
[docs] def paste(self, image, method='sum', wcs_check=True): """ Paste smaller image into image. WCS specifications of both images must be aligned. If not call `SkyImage.reproject()` on one of the images first. See :ref:`image-cutpaste` more for information how to cut and paste sky images. Parameters ---------- image : `~gammapy.image.SkyImage` Smaller image to paste. method : {'sum', 'replace'}, optional Sum or replace total values with cutout values. wcs_check : bool Check if both WCS are aligned. Raises `~astropy.wcs.WcsError` if not. Disable for performance critical computations. """ xlo, xhi, ylo, yhi = self._get_boundaries(self, image, wcs_check) xlo_c, xhi_c, ylo_c, yhi_c = self._get_boundaries(image, self, wcs_check) if method == 'sum': self.data[ylo:yhi, xlo:xhi] += image.data[ylo_c:yhi_c, xlo_c:xhi_c] elif method == 'replace': self.data[ylo:yhi, xlo:xhi] = image.data[ylo_c:yhi_c, xlo_c:xhi_c] else: raise ValueError('Invalid method: {}'.format(method))
[docs] def cutout(self, position, size): """ Cut out rectangular piece of a image. See :ref:`image-cutpaste` for more information how to cut and paste sky images. Parameters ---------- position : `~astropy.coordinates.SkyCoord` Position of the center of the image to cut out. size : int, array-like, `~astropy.units.Quantity` The size of the cutout array along each axis. If ``size`` is a scalar number or a scalar `~astropy.units.Quantity`, then a square cutout of ``size`` will be created. If ``size`` has two elements, they should be in ``(ny, nx)`` order. Scalar numbers in ``size`` are assumed to be in units of pixels. ``size`` can also be a `~astropy.units.Quantity` object or contain `~astropy.units.Quantity` objects. Such `~astropy.units.Quantity` objects must be in pixel or angular units. For all cases, ``size`` will be converted to an integer number of pixels, rounding the the nearest integer. See the ``mode`` keyword for additional details on the final cutout size. .. note:: If ``size`` is in angular units, the cutout size is converted to pixels using the pixel scales along each axis of the image at the ``CRPIX`` location. Projection and other non-linear distortions are not taken into account. Returns ------- cutout : `~gammapy.image.SkyImage` Cut out image. """ cutout = Cutout2D( self.data, position=position, wcs=self.wcs, size=size, copy=True, ) return self.__class__( name=self.name, data=cutout.data, wcs=cutout.wcs, unit=self.unit, )
[docs] def pad(self, pad_width, mode='reflect', **kwargs): """ Pad sky image at the edges. Calls `numpy.pad`, passing ``mode`` and ``kwargs`` to it and adapts the wcs specifcation. Parameters ---------- pad_width : {sequence, array_like, int} Number of values padded to the edges of each axis, passed to `numpy.pad` mode : str ('reflect') Padding mode, passed to `numpy.pad`. Returns ------- image : `~gammapy.image.SkyImage` Padded image Examples -------- >>> from gammapy.image import SkyImage >>> image = SkyImage.empty(nxpix=10, nypix=13) >>> print(image.data.shape) (13, 10) >>> image2 = image.pad(pad_width=4, mode='reflect') >>> image2.data.shape (18, 21) """ # converting from unicode to ascii string as a workaround # for https://github.com/numpy/numpy/issues/7112 mode = str(mode) pad_width = _validate_lengths(self.data, pad_width) xlo, xhi = pad_width[self._ax_idx.x] ylo, yhi = pad_width[self._ax_idx.y] data = np.pad(self.data, pad_width=pad_width, mode=mode, **kwargs) wcs = self.wcs.deepcopy() wcs.wcs.crpix += np.array([xlo, ylo]) return self.__class__(name=self.name, data=data, wcs=wcs, unit=self.unit)
[docs] def crop(self, crop_width): """ Crop sky image at the edges with given crop width. Analogous method to :meth:`SkyImage.pad()` to crop the sky image at the edges. Adapts the WCS specification accordingly. Parameters ---------- crop_width : {sequence, array_like, int} Number of values cropped from the edges of each axis. Defined analogously to `pad_with` from `~numpy.pad`. Returns ------- image : `~gammapy.image.SkyImage` Cropped image """ crop_width = _validate_lengths(self.data, crop_width) xlo, xhi = crop_width[self._ax_idx.x] ylo, yhi = crop_width[self._ax_idx.y] data = self.data[ylo:-yhi, xlo:-xhi] if self.wcs: wcs = self.wcs.deepcopy() wcs.wcs.crpix -= np.array([xlo, ylo]) else: wcs = None return self.__class__(name=self.name, data=data, wcs=wcs, unit=self.unit)
[docs] def downsample(self, factor, method=np.nansum): """ Down sample image by a given factor. The image is down sampled using `skimage.measure.block_reduce`. If the shape of the data is not divisible by the down sampling factor, the image must be padded beforehand to the correct shape. Parameters ---------- factor : int Down sampling factor. method : np.ufunc (np.nansum), optional Method how to combine the image blocks. Returns ------- image : `SkyImage` Down sampled image. """ from skimage.measure import block_reduce shape = self.data.shape if not (np.mod(shape, factor) == 0).all(): raise ValueError('Data shape {0} is not divisable by {1} in all axes.' 'Pad image prior to downsamling to correct' ' shape.'.format(shape, factor)) data = block_reduce(self.data, (factor, factor), method) if self.wcs is not None: wcs = get_resampled_wcs(self.wcs, factor, downsampled=True) else: wcs = None return self.__class__(name=self.name, data=data, wcs=wcs, unit=self.unit)
[docs] def upsample(self, factor, **kwargs): """ Up sample image by a given factor. The image is up sampled using `scipy.ndimage.zoom`. Parameters ---------- factor : int Up sampling factor. order : int Order of the interpolation used for upsampling. Returns ------- image : `SkyImage` Up sampled image. """ from scipy.ndimage import zoom data = zoom(self.data, factor, **kwargs) if self.wcs is not None: wcs = get_resampled_wcs(self.wcs, factor, downsampled=False) else: wcs = None return self.__class__(name=self.name, data=data, wcs=wcs, unit=self.unit)
[docs] def lookup_max(self, region=None): """ Find position of maximum in a image. Parameters ---------- region : `~regions.SkyRegion` (optional) Limit lookup of maximum to that given sky region. Returns ------- (position, value): `~astropy.coordinates.SkyCoord`, float Position and value of the maximum. """ if region: mask = region.contains(self.coordinates()) else: mask = np.ones_like(self.data) idx = np.nanargmax(self.data * mask) y, x = np.unravel_index(idx, self.data.shape) pos = self.wcs_pixel_to_skycoord(xp=x, yp=y) return pos, self.data[y, x]
[docs] def lookup(self, position, interpolation=None): """ Lookup value at given sky position. Parameters ---------- position : `~astropy.coordinates.SkyCoord` Position on the sky. interpolation : {'None'} Interpolation mode. """ x, y = self.wcs_skycoord_to_pixel(coords=position) return self.data[np.rint(y).astype('int'), np.rint(x).astype('int')]
[docs] def lookup_pix(self, position, interpolation=None): """ Lookup value at given pixel position. Parameters ---------- position : `~regions.PixCoord` Pixel coordinate position interpolation : {'None'} Interpolation mode. """ # TODO: this rounding computation should be moved to a method on `PixCoord` x = np.rint(position.x).astype('int') y = np.rint(position.y).astype('int') return self.data[y, x]
[docs] def to_quantity(self): """ Convert image to `~astropy.units.Quantity`. """ return u.Quantity(self.data, self.unit)
[docs] def to_sherpa_data2d(self, dstype='Data2D'): """ Convert image to `~sherpa.data.Data2D` or `~sherpa.data.Data2DInt` class. Parameters ---------- dstype : {'Data2D', 'Data2DInt'} Sherpa data type. """ from sherpa.data import Data2D, Data2DInt if dstype == 'Data2D': coordinates = self.coordinates(mode='center') x = coordinates.data.lon.degree y = coordinates.data.lat.degree return Data2D(self.name, x.ravel(), y.ravel(), self.data.ravel(), self.data.shape) elif dstype == 'Data2DInt': coordinates = self.coordinates(mode='edges') x = coordinates.data.lon y = coordinates.data.lat xlo, xhi = x[:-1], x[1:] ylo, yhi = y[:-1], y[1:] return Data2DInt(self.name, xlo.ravel(), xhi.ravel(), ylo.ravel(), yhi.ravel(), self.data.ravel(), self.data.shape) else: raise ValueError('Invalid sherpa data type.')
[docs] def copy(self): """ Copy image. """ return deepcopy(self)
[docs] def reproject(self, reference, mode='interp', *args, **kwargs): """ Reproject image to given reference. Parameters ---------- reference : `~astropy.io.fits.Header`, or `~gammapy.image.SkyImage` Reference image specification to reproject the data on. mode : {'interp', 'exact'} Interpolation mode. *args : list Arguments passed to `~reproject.reproject_interp` or `~reproject.reproject_exact`. **kwargs : dict Keyword arguments passed to `~reproject.reproject_interp` or `~reproject.reproject_exact`. Returns ------- image : `~gammapy.image.SkyImage` Image reprojected onto ``reference``. """ from reproject import reproject_interp, reproject_exact if isinstance(reference, SkyImage): wcs_reference = reference.wcs shape_out = reference.data.shape elif isinstance(reference, fits.Header): wcs_reference = WCS(reference) shape_out = (reference['NAXIS2'], reference['NAXIS1']) else: raise TypeError("Invalid reference image. Must be either instance" "of `Header`, `WCS` or `SkyImage`.") if mode == 'interp': out = reproject_interp((self.data, self.wcs), wcs_reference, shape_out=shape_out, *args, **kwargs) elif mode == 'exact': out = reproject_exact((self.data, self.wcs), wcs_reference, shape_out=shape_out, *args, **kwargs) else: raise TypeError("Invalid reprojection mode, either choose 'interp' or 'exact'") return self.__class__( name=self.name, data=out[0], wcs=wcs_reference, unit=self.unit, meta=self.meta, )
[docs] def show(self, viewer='mpl', ds9options=None, **kwargs): """ Show image in image viewer. Parameters ---------- viewer : {'mpl', 'ds9'} Which image viewer to use. Option 'ds9' requires ds9 to be installed. ds9options : list, optional List of options passed to ds9. E.g. ['-cmap', 'heat', '-scale', 'log']. Any valid ds9 command line option can be passed. See http://ds9.si.edu/doc/ref/command.html for details. **kwargs : dict Keyword arguments passed to `~matplotlib.pyplot.imshow`. """ if viewer == 'mpl': # TODO: replace by better MPL or web based image viewer import matplotlib.pyplot as plt fig = plt.gcf() axes = fig.add_axes([0.1, 0.1, 0.8, 0.8], projection=self.wcs) self.plot(axes, fig, **kwargs) plt.show() elif viewer == 'ds9': ds9options = ds9options or [] with NamedTemporaryFile() as f: self.write(f.name) call(['ds9', f.name, '-cmap', 'bb'] + ds9options) else: raise ValueError("Invalid image viewer option, choose either" " 'mpl' or 'ds9'.")
[docs] def plot(self, ax=None, fig=None, add_cbar=False, **kwargs): """ Plot image on matplotlib WCS axes. Parameters ---------- ax : `~astropy.visualization.wcsaxes.WCSAxes`, optional WCS axis object to plot on. fig : `~matplotlib.figure.Figure`, optional Figure Returns ------- fig : `~matplotlib.figure.Figure`, optional Figure ax : `~astropy.visualization.wcsaxes.WCSAxes`, optional WCS axis object cbar : ? Colorbar object (if ``add_cbar=True`` was set) """ import matplotlib.pyplot as plt if fig is None: fig = plt.gcf() if ax is None: ax = fig.add_subplot(1, 1, 1, projection=self.wcs) kwargs['origin'] = kwargs.get('origin', 'lower') kwargs['cmap'] = kwargs.get('cmap', 'afmhot') kwargs['interpolation'] = kwargs.get('interpolation', 'None') # TODO: make skyimage.data a quantity try: data = self.data.value except AttributeError: data = self.data caxes = ax.imshow(data, **kwargs) if add_cbar: unit = self.unit or 'A.U.' label = self.name or 'None' cbar = fig.colorbar(caxes, ax=ax, label='{0} ({1})'.format(label.title(), unit)) else: cbar = None try: ax.coords['glon'].set_axislabel('Galactic Longitude') ax.coords['glat'].set_axislabel('Galactic Latitude') except KeyError: ax.coords['ra'].set_axislabel('Right Ascension') ax.coords['dec'].set_axislabel('Declination') except AttributeError: log.info("Can't set coordinate axes. No WCS information available.") # without this the axis limits are changed when calling scatter ax.autoscale(enable=False) return fig, ax, cbar
[docs] def info(self): """ Print summary info about the image. """ print(str(self))
def __str__(self): """ String representation of the class. """ info = "Name: {}\n".format(self.name) if self.data is not None: info += "Data shape: {}\n".format(self.data.shape) info += "Data type: {}\n".format(self.data.dtype) info += "Data unit: {}\n".format(self.unit) info += "Data mean: {:.3e}\n".format(np.nanmean(self.data)) if self.wcs is not None: info += "WCS type: {}\n".format(self.wcs.wcs.ctype) return info def __array__(self): """ Array representation of image. """ return self.data
[docs] def threshold(self, threshold): """Threshold this image, creating a mask. Parameters ---------- threshold : float Threshold value. Returns ------- mask : `~gammapy.image.SkyImage` Mask with 0 where data > threshold and 1 otherwise Examples -------- TODO: some more docs and example """ mask = self.copy() mask.data = np.where(self.data > threshold, 0, 1) return mask
[docs] def wcs_skycoord_to_pixel(self, coords): """ Convert a set of SkyCoord coordinates into pixels. Calls `~astropy.wcs.utils.skycoord_to_pixel`, passing ``coords`` to it. Parameters ---------- coords : `~astropy.coordinates.SkyCoord` The coordinates to convert. Returns ------- xp, yp : `~numpy.ndarray` The pixel coordinates. """ return skycoord_to_pixel(coords=coords, wcs=self.wcs, origin=_DEFAULT_WCS_ORIGIN, mode=_DEFAULT_WCS_MODE)
[docs] def wcs_pixel_to_skycoord(self, xp, yp): """ Convert a set of pixel coordinates into a `~astropy.coordinates.SkyCoord` coordinate. Calls `~astropy.wcs.utils.pixel_to_skycoord`, passing ``xp``, ``yp`` to it. Parameters ---------- xp, yp : float or `~numpy.ndarray` The coordinates to convert. Returns ------- coordinates : `~astropy.coordinates.SkyCoord` The celestial coordinates. Examples -------- >>> from gammapy.image import SkyImage >>> image = SkyImage.empty(nxpix=10, nypix=15) >>> x, y = [5, 3.4], [8, 11.2] >>> image.wcs_pixel_to_skycoord(xp=x, yp=y) <SkyCoord (Galactic): (l, b) in deg [(359.99, 0.02), (0.022, 0.084)]> """ return pixel_to_skycoord(xp=xp, yp=yp, wcs=self.wcs, origin=_DEFAULT_WCS_ORIGIN, mode=_DEFAULT_WCS_MODE)
[docs] def wcs_pixel_scale(self, method='cdelt'): """Pixel scale. Returns angles along each axis of the image pixel at the CRPIX location once it is projected onto the plane of intermediate world coordinates. Calls `~astropy.wcs.utils.proj_plane_pixel_scales`. Parameters ---------- method : {'cdelt', 'proj_plane'} (default 'cdelt') Result is calculated according to the 'cdelt' or 'proj_plane' methods. Returns ------- angle : `~astropy.coordinates.Angle` An angle of projection plane increments corresponding to each pixel side (axis). Examples -------- >>> from gammapy.image import SkyImage >>> image = SkyImage.empty(nxpix=3, nypix=2) >>> image.wcs_pixel_scale() <Angle [ 0.02, 0.02] deg> """ if method == 'cdelt': scales = np.abs(self.wcs.wcs.cdelt) elif method == 'proj_plane': scales = proj_plane_pixel_scales(wcs=self.wcs) else: raise ValueError('Invalid method: {}'.format(method)) return Angle(scales, unit='deg')
[docs] def region_mask(self, region): """Create a boolean mask for a region. The ``data`` of this image is unchanged, a new mask is returned. The mask is: - ``True`` for pixels inside the region - ``False`` for pixels outside the region Parameters ---------- region : `~regions.PixelRegion` or `~regions.SkyRegion` object A region on the sky could be defined in pixel or sky coordinates. Returns ------- mask : `~gammapy.image.SkyImage` A boolean sky mask. Examples -------- >>> from gammapy.image import SkyImage >>> from regions import CirclePixelRegion, PixCoord >>> region = CirclePixelRegion(center=PixCoord(x=2, y=1), radius=1.1) >>> image = SkyImage.empty(nxpix=5, nypix=4) >>> mask = image.region_mask(region) >>> print(mask.data.astype(int)) [[0 0 1 0 0] [0 1 1 1 0] [0 0 1 0 0] [0 0 0 0 0]] """ if isinstance(region, PixelRegion): coords = self.coordinates_pix() elif isinstance(region, SkyRegion): coords = self.coordinates() else: raise TypeError("Invalid region type, must be instance of " "'regions.PixelRegion' or 'regions.SkyRegion'") mask = self.copy() mask.data = region.contains(coords) return mask
@staticmethod
[docs] def assert_allclose(image1, image2, check_wcs=True): """Assert all-close for `SkyImage`. A useful helper function to implement tests. """ from numpy.testing import assert_allclose from gammapy.utils.testing import assert_wcs_allclose assert image1.name == image2.name if (image1.data is None) and (image2.data is None): pass elif (image1.data is not None) and (image2.data is not None): assert_allclose(image1.data, image2.data) else: raise ValueError('One image has `data==None` and the other does not.') if check_wcs is False: pass elif (image1.wcs is None) and (image2.wcs is None): pass elif (image1.wcs is not None) and (image2.wcs is not None): assert_wcs_allclose(image1.wcs, image2.wcs) else: raise ValueError('One image has `wcs==None` and the other does not.')
[docs] def convolve(self, kernel, **kwargs): """ Convolve sky image with kernel. Parameters ---------- kernel : `~numpy.ndarray` 2D array representing the convolution kernel. **kwargs : dict Further keyword arguments passed to `~scipy.ndimage.convolve`. """ from scipy.ndimage import convolve data = convolve(self.data, kernel, **kwargs) wcs = self.wcs.deepcopy() if self.wcs else None return self.__class__(name=self.name, data=data, wcs=wcs)
[docs] def smooth(self, kernel='gauss', radius=0.1 * u.deg, **kwargs): """ Smooth the image (works on and returns a copy). The definition of the smoothing parameter radius is equivalent to the one that is used in ds9 (see `ds9 smoothing <http://ds9.si.edu/doc/ref/how.html#Smoothing>`_). Parameters ---------- kernel : {'gauss', 'disk', 'box'} Kernel shape radius : `~astropy.units.Quantity` or float Smoothing width given as quantity or float. If a float is given it interpreted as smoothing width in pixels. If an (angular) quantity is given it converted to pixels using `SkyImage.wcs_pixel_scale()`. kwargs : dict Keyword arguments passed to `~scipy.ndimage.uniform_filter` ('box'), `~scipy.ndimage.gaussian_filter` ('gauss') or `~scipy.ndimage.convolve` ('disk'). Returns ------- image : `SkyImage` Smoothed image (a copy, the original object is unchanged). """ from scipy.ndimage import gaussian_filter, uniform_filter from scipy.ndimage import convolve from scipy.stats import gmean image = self.copy() if isinstance(radius, u.Quantity): # use geometric mean if x an y pixel scale differ radius = gmean((radius / self.wcs_pixel_scale()).value) if kernel == 'gauss': width = radius / 2. image.data = gaussian_filter(self.data, width, **kwargs) elif kernel == 'disk': width = 2 * radius + 1 disk = Tophat2DKernel(width) disk.normalize('integral') image.data = convolve(self.data, disk.array, **kwargs) elif kernel == 'box': width = 2 * radius + 1 image.data = uniform_filter(self.data, width, **kwargs) else: raise ValueError('Invalid option kernel = {}'.format(kernel)) return image
[docs] def solid_angle(self): """ Solid angle image (2-dim `~astropy.units.Quantity` in `sr`). """ coordinates = self.coordinates(mode='edges') lon = coordinates.data.lon.radian lat = coordinates.data.lat.radian # Compute solid angle using the approximation that it's # the product between angular separation of pixel corners. # First index is "y", second index is "x" ylo_xlo = lon[:-1, :-1], lat[:-1, :-1] ylo_xhi = lon[:-1, 1:], lat[:-1, 1:] yhi_xlo = lon[1:, :-1], lat[1:, :-1] dx = angular_separation(*(ylo_xlo + ylo_xhi)) dy = angular_separation(*(ylo_xlo + yhi_xlo)) omega = u.Quantity(dx * dy, 'sr') return omega
@property def distance_image(self): """Distance to nearest exclusion region. Compute distance image, i.e. the Euclidean (=Cartesian 2D) distance (in pixels) to the nearest exclusion region. We need to call distance_transform_edt twice because it only computes dist for pixels outside exclusion regions, so to get the distances for pixels inside we call it on the inverted mask and then combine both distance images into one, using negative distances (note the minus sign) for pixels inside exclusion regions. If data consist only of ones, it'll be supposed to be far away from zero pixels, so in capacity of answer it should be return the matrix with the shape as like as data but packed by constant value Max_Value (MAX_VALUE = 1e10). If data consist only of zeros, it'll be supposed to be deep inside an exclusion region, so in capacity of answer it should be return the matrix with the shape as like as data but packed by constant value -Max_Value (MAX_VALUE = 1e10). Returns ------- distance : `~gammapy.image.SkyImage` Sky image of distance to nearest exclusion region. Examples -------- >>> from gammapy.image import SkyImage >>> data = np.array([[0., 0., 1.], [1., 1., 1.]]) >>> mask = SkyImage(data=data) >>> print(mask.distance_image.data) [[-1, -1, 1], [1, 1, 1.41421356]] """ self._check_is_mask() from scipy.ndimage import distance_transform_edt max_value = 1e10 if np.all(self.data == 1): return SkyImage.empty_like(self, fill=max_value) if np.all(self.data == 0): return SkyImage.empty_like(self, fill=-max_value) distance_outside = distance_transform_edt(self.data) invert_mask = np.invert(np.array(self.data, dtype=np.bool)) distance_inside = distance_transform_edt(invert_mask) distance = np.where(self.data, distance_outside, -distance_inside) return SkyImage(data=distance, wcs=self.wcs)