SNRTrueloveMcKee¶
-
class
gammapy.astro.source.
SNRTrueloveMcKee
(*args, **kwargs)[source]¶ Bases:
gammapy.astro.source.SNR
SNR model according to Truelove & McKee (1999).
Reference: http://adsabs.harvard.edu/abs/1999ApJS..120..299T
Attributes Summary
sedov_taylor_begin
Characteristic time scale when the Sedov-Taylor phase starts. Methods Summary
radius
([t])Outer shell radius at age t. radius_reverse_shock
(t)Reverse shock radius at age t. Attributes Documentation
-
sedov_taylor_begin
¶ Characteristic time scale when the Sedov-Taylor phase starts.
Given by \(t_{ST} \approx 0.52 t_{ch}\).
Methods Documentation
-
radius
(t=None)[source]¶ Outer shell radius at age t.
Parameters: t :
Quantity
Time after birth of the SNR.
Notes
The radius during the free expansion phase is given by:
\[R_{SNR}(t) = 1.12R_{ch}\left(\frac{t}{t_{ch}}\right)^{2/3}\]The radius during the Sedov-Taylor phase evolves like:
\[R_{SNR}(t) = \left[R_{SNR, ST}^{5/2} + \left(2.026\frac{E_{SN}} {\rho_{ISM}}\right)^{1/2}(t - t_{ST})\right]^{2/5}\]Using the characteristic dimensions:
\[R_{ch} = M_{ej}^{1/3}\rho_{ISM}^{-1/3} \ \ \textnormal{and} \ \ t_{ch} = E_{SN}^{-1/2}M_{ej}^{5/6}\rho_{ISM}^{-1/3}\]
-
radius_reverse_shock
(t)[source]¶ Reverse shock radius at age t.
Parameters: t :
Quantity
Time after birth of the SNR.
Notes
Initially the reverse shock co-evolves with the radius of the SNR:
\[R_{RS}(t) = \frac{1}{1.19}r_{SNR}(t)\]After a time \(t_{core} \simeq 0.25t_{ch}\) the reverse shock reaches the core and then propagates as:
\[R_{RS}(t) = \left[1.49 - 0.16 \frac{t - t_{core}}{t_{ch}} - 0.46 \ln \left(\frac{t}{t_{core}}\right)\right]\frac{R_{ch}}{t_{ch}}t\]
-