OffDataBackgroundMaker¶
-
class
gammapy.background.
OffDataBackgroundMaker
(data_store, outdir=None, run_list=None, obs_table=None, ntot_group=None, excluded_sources=None)[source]¶ Bases:
object
OffDataBackgroundMaker class.
Class that will select an OFF list run from a Data list and then group this runlist in group. Then for each group, it will compute the background rate model in 3D (X, Y, energy) or 2D (energy, offset) via the class
FOVCubeBackgroundModel
(3D) orEnergyOffsetBackgroundModel
(2D).Parameters: data_store :
DataStore
Data for the background model
outdir : str
directory where will go the output
run_list : str
filename where is store the OFF run list
obs_table :
ObservationTable
observation table of the OFF run List used for the background modelling require GROUP_ID column
ntot_group : int
Number of group
excluded_sources :
Table
Table of excluded sources. Required columns: RA, DEC, Radius
Methods Summary
define_obs_table
()Make an obs table for the OFF runs list. filename
(modeltype, group_id[, smooth])Filename for a given modeltype
andgroup_id
.group_observations
()Group the background observation list. make_bkg_index_table
(data_store, modeltype)Make background model index table. make_model
(modeltype[, ebounds, offset])Make background models. make_total_index_table
(data_store, modeltype)Create a hdu-index table with a row containing the link to the background model for each observation. save_model
(modeltype, ngroup[, smooth])Save model to fits for one group. save_models
(modeltype[, smooth])Save model to fits for all the groups. select_observations
(selection[, n_obs_max])Make off run list for background models. smooth_model
(modeltype, ngroup)Smooth the bkg model for one group. smooth_models
(modeltype)Smooth the bkg model for each group. Methods Documentation
-
define_obs_table
()[source]¶ Make an obs table for the OFF runs list.
This table is created from the obs table of all the runs
Returns: table :
Table
observation table of the OFF run List
-
static
filename
(modeltype, group_id, smooth=False)[source]¶ Filename for a given
modeltype
andgroup_id
.Parameters: modeltype : {‘3D’, ‘2D’}
Type of the background modelisation
group_id : int
number of the background model group
smooth : bool
True if you want to use the smooth bkg model
-
group_observations
()[source]¶ Group the background observation list.
For now we’ll just use the zenith binning from HAP.
-
make_bkg_index_table
(data_store, modeltype, out_dir_background_model=None, filename_obs_group_table=None, smooth=False)[source]¶ Make background model index table.
Parameters: data_store :
DataStore
DataStore
for the runs for which ones we want to compute a background modelmodeltype : {‘3D’, ‘2D’}
Type of the background modelisation
out_dir_background_model : str
directory where are located the backgrounds models for each group
filename_obs_group_table : str
name of the file containing the
Table
with the group infossmooth : bool
True if you want to use the smooth bkg model
Returns: index_table_bkg :
Table
Index hdu table only for the background in order to associate a bkg model for each observation
-
make_model
(modeltype, ebounds=None, offset=None)[source]¶ Make background models.
Create the list of background model (
FOVCubeBackgroundModel
(3D) orEnergyOffsetBackgroundModel
(2D)) for each groupParameters: modeltype : {‘3D’, ‘2D’}
Type of the background modelisation
ebounds :
EnergyBounds
Energy bounds vector (1D)
offset :
Angle
Offset vector (1D)
-
make_total_index_table
(data_store, modeltype, out_dir_background_model=None, filename_obs_group_table=None, smooth=False)[source]¶ Create a hdu-index table with a row containing the link to the background model for each observation.
Parameters: data_store :
DataStore
DataStore
for the runs for which ones we want to compute a background modelmodeltype : {‘3D’, ‘2D’}
Type of the background modelisation
out_dir_background_model : str
directory where are located the backgrounds models for each group
filename_obs_group_table : str
name of the file containing the
Table
with the group infossmooth : bool
True if you want to use the smooth bkg model
Returns: index_table_new :
Table
Index hdu table with a background row
-
save_model
(modeltype, ngroup, smooth=False)[source]¶ Save model to fits for one group.
Parameters: modeltype : {‘3D’, ‘2D’}
Type of the background modelisation
ngroup : int
Groups ID
-
save_models
(modeltype, smooth=False)[source]¶ Save model to fits for all the groups.
Parameters: modeltype : {‘3D’, ‘2D’}
Type of the background modelisation
-
select_observations
(selection, n_obs_max=None)[source]¶ Make off run list for background models.
- selection=’offplane’ is all runs where - Observation is available here - abs(GLAT) > 5 (i.e. not in the Galactic plane)
- selection=’all’ – all available observations
Parameters: selection : {‘offplane’, ‘all’}
Observation selection method.
n_obs_max : int, None
Maximum number of observations (useful for quick testing)
-