make_bg_cube_models¶
-
gammapy.scripts.
make_bg_cube_models
(indir, outdir, overwrite=False, test=False, method='default')[source]¶ Create background cube models from the complete dataset of an experiment.
Starting with gamma-ray event lists and effective area IRFs, make background templates. Steps
- make a global event list from a datastore
- filter the runs keeping only the ones far from known sources
- group the runs according to similar observation conditions (i.e. alt, az)
- using
ObservationGroups
- using
- create a bg cube model for each group using:
- the
make_bg_cube_model
method - and
FOVCubeBackgroundModel
objects as containers
- the
The models are stored into FITS files.
It can take a few minutes to run. For a quicker test, please activate the test flag.
Parameters: indir : str
Input directory (that contains the event lists)
outdir : str
Dir path to store the results.
overwrite : bool
If true, run fast (not recommended for analysis).
test : bool
If true, run fast (not recommended for analysis).
method : {‘default’, ‘michi’}
Bg cube model calculation method to apply.
Examples
$ gammapy-make-bg-cube-models -h $ gammapy-make-bg-cube-models <indir> HESS bg_cube_models $ gammapy-make-bg-cube-models <indir> HESS bg_cube_models –test $ gammapy-make-bg-cube-models <indir> HESS bg_cube_models –test –overwrite $ gammapy-make-bg-cube-models <indir> HESS bg_cube_models –method michi