FluxPointsFitter¶
-
class
gammapy.spectrum.
FluxPointsFitter
(stat='chi2', optimizer='simplex', error_estimator='covar', ul_handling='ignore')[source]¶ Bases:
object
Fit a set of flux points with a parametric model.
Parameters: optimizer : {‘simplex’, ‘moncar’, ‘gridsearch’}
Select optimizer
error_estimator : {‘covar’}
Select error estimator
ul_handling : {‘ignore’}
How to handle flux point upper limits in the fit
Examples
Load flux points from file and fit with a power-law model:
from astropy import units as u from gammapy.spectrum import FluxPoints, FluxPointsFitter from gammapy.spectrum.models import PowerLaw filename = '$GAMMAPY_EXTRA/test_datasets/spectrum/flux_points/diff_flux_points.fits' flux_points = FluxPoints.read(filename) model = PowerLaw( index=2. * u.Unit(''), amplitude=1e-12 * u.Unit('cm-2 s-1 TeV-1'), reference=1. * u.TeV, ) fitter = FluxPointsFitter() result = fitter.run(flux_points, model) print(result['best_fit_model'])
Methods Summary
dof
(data, model)Degrees of freedom. estimate_errors
(data, model)Estimate errors on best fit parameters. fit
(data, model)Fit given model to data. run
(data, model)Run all fitting adn extra information steps. statval
(data, model)Compute statval for given model and data. Methods Documentation
-
dof
(data, model)[source]¶ Degrees of freedom.
Parameters: model :
SpectralModel
Spectral model
-
fit
(data, model)[source]¶ Fit given model to data.
Parameters: model :
SpectralModel
Spectral model (with fit start parameters)
Returns: best_fit_model :
SpectralModel
Best fit model
-
run
(data, model)[source]¶ Run all fitting adn extra information steps.
Parameters: data : list of
FluxPoints
Flux points.
model :
SpectralModel
Spectral model
Returns: result :
OrderedDict
Dictionary with fit results and debug output.
-
statval
(data, model)[source]¶ Compute statval for given model and data.
Parameters: model :
SpectralModel
Spectral model
-