PowerLaw2¶
-
class
gammapy.spectrum.models.
PowerLaw2
(amplitude, index, emin, emax)[source]¶ Bases:
gammapy.spectrum.models.SpectralModel
Spectral power-law model with integral as norm parameter
See http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/source_models.html for further details.
\[\phi(E) = F_0 \cdot \frac{\Gamma + 1}{E_{0, max}^{\Gamma + 1} - E_{0, min}^{\Gamma + 1}} \cdot E^{-\Gamma}\]Parameters: index :
Quantity
Spectral index \(\Gamma\)
amplitude :
Quantity
Integral flux \(F_0\).
emin :
Quantity
Lower energy limit \(E_{0, min}\).
emax :
Quantity
Upper energy limit \(E_{0, max}\).
Methods Summary
evaluate
(energy, amplitude, index, emin, emax)integral
(emin, emax)Integrate power law analytically. integral_error
(emin, emax, **kwargs)Integrate power law analytically with error propagation. inverse
(value)Return energy for a given function value of the spectral model. Methods Documentation
-
integral
(emin, emax)[source]¶ Integrate power law analytically.
\[F(E_{min}, E_{max}) = F_0 \cdot \frac{E_{max}^{\Gamma + 1} \ - E_{min}^{\Gamma + 1}}{E_{0, max}^{\Gamma + 1} \ - E_{0, min}^{\Gamma + 1}}\]Parameters: emin, emax :
Quantity
Lower and upper bound of integration range.
-