ObservationList¶
-
class
gammapy.data.ObservationList(initlist=None)[source]¶ Bases:
collections.UserListList of
DataStoreObservation.Could be extended to hold a more generic class of observations.
Methods Summary
append(item)clear()copy()count(item)extend(other)index(item, *args)insert(i, item)make_mean_edisp(position, e_true, e_reco[, …])Compute mean energy dispersion. make_mean_psf(position[, energy, rad])Compute mean energy-dependent PSF. pop([i])remove(item)reverse()sort(*args, **kwds)Methods Documentation
-
append(item)¶
-
clear()¶
-
copy()¶
-
count(item)¶
-
extend(other)¶
-
index(item, *args)¶
-
insert(i, item)¶
-
make_mean_edisp(position, e_true, e_reco, low_reco_threshold=<Energy 0.002 TeV>, high_reco_threshold=<Energy 150. TeV>)[source]¶ Compute mean energy dispersion.
Compute the mean edisp of a set of observations j at a given position
The stacking is implemented in
stack_edisp()Parameters: position :
SkyCoordPosition at which to compute the mean EDISP
e_true :
EnergyBoundsTrue energy axis
e_reco :
EnergyBoundsReconstructed energy axis
low_reco_threshold :
Energylow energy threshold in reco energy, default 0.002 TeV
high_reco_threshold :
Energyhigh energy threshold in reco energy , default 150 TeV
Returns: stacked_edisp :
EnergyDispersionStacked EDISP for a set of observation
-
make_mean_psf(position, energy=None, rad=None)[source]¶ Compute mean energy-dependent PSF.
Parameters: position :
SkyCoordPosition at which to compute the PSF
energy :
Quantity1-dim energy array for the output PSF. If none is given, the energy array of the PSF from the first observation is used.
rad :
Angle1-dim offset wrt source position array for the output PSF. If none is given, the energy array of the PSF from the first observation is used.
Returns: psf :
EnergyDependentTablePSFMean PSF
-
pop(i=-1)¶
-
remove(item)¶
-
reverse()¶
-
sort(*args, **kwds)¶
-