FluxPointFitter¶
-
class
gammapy.spectrum.FluxPointFitter(stat='chi2', optimizer='simplex', error_estimator='covar', ul_handling='ignore')[source]¶ Bases:
objectFit a set of flux points with a parametric model.
Parameters: optimizer : {‘simplex’, ‘moncar’, ‘gridsearch’}
Select optimizer
error_estimator : {‘covar’}
Select error estimator
ul_handling : {‘ignore’}
How to handle flux point upper limits in the fit
Examples
Load flux points from file and fit with a power-law model:
from astropy import units as u from gammapy.spectrum import FluxPoints, FluxPointFitter from gammapy.spectrum.models import PowerLaw filename = '$GAMMAPY_EXTRA/test_datasets/spectrum/flux_points/diff_flux_points.fits' flux_points = FluxPoints.read(filename) model = PowerLaw( index=2. * u.Unit(''), amplitude=1e-12 * u.Unit('cm-2 s-1 TeV-1'), reference=1. * u.TeV, ) fitter = FluxPointFitter() result = fitter.run(flux_points, model) print(result['best_fit_model'])
Methods Summary
dof(data, model)Degrees of freedom. estimate_errors(data, model)Estimate errors on best fit parameters. fit(data, model)Fit given model to data. run(data, model)Run all fitting adn extra information steps. statval(data, model)Compute statval for given model and data. Methods Documentation
-
dof(data, model)[source]¶ Degrees of freedom.
Parameters: model :
SpectralModelSpectral model
-
fit(data, model)[source]¶ Fit given model to data.
Parameters: model :
SpectralModelSpectral model (with fit start parameters)
Returns: best_fit_model :
SpectralModelBest fit model
-
run(data, model)[source]¶ Run all fitting adn extra information steps.
Parameters: data : list of
FluxPointsFlux points.
model :
SpectralModelSpectral model
Returns: result :
OrderedDictDictionary with fit results and debug output.
-
statval(data, model)[source]¶ Compute statval for given model and data.
Parameters: model :
SpectralModelSpectral model
-