PowerLaw¶
-
class
gammapy.spectrum.models.PowerLaw(index=2.0, amplitude=<Quantity 1.e-12 1 / (cm2 s TeV)>, reference=<Quantity 1. TeV>)[source]¶ Bases:
gammapy.spectrum.models.SpectralModelSpectral power-law model.
\[\phi(E) = \phi_0 \cdot \left( \frac{E}{E_0} \right)^{-\Gamma}\]Parameters: index :
Quantity\(\Gamma\)
amplitude :
Quantity\(Phi_0\)
reference :
Quantity\(E_0\)
Examples
This is how to plot the default
PowerLawmodel:from astropy import units as u from gammapy.spectrum.models import PowerLaw pwl = PowerLaw() pwl.plot(energy_range=[0.1, 100] * u.TeV) plt.show()
Methods Summary
__call__(energy)Call evaluate method of derived classes copy()A deep copy. energy_flux(emin, emax)Compute energy flux in given energy range analytically. energy_flux_error(emin, emax, **kwargs)Compute energy flux in given energy range analytically with error propagation. evaluate(energy, index, amplitude, reference)Evaluate the model (static function). evaluate_error(energy)Evaluate spectral model with error propagation. from_dict(val)Create from dict. integral(emin, emax, **kwargs)Integrate power law analytically. integral_error(emin, emax, **kwargs)Integrate power law analytically with error propagation. inverse(value)Return energy for a given function value of the spectral model. plot(energy_range[, ax, energy_unit, …])Plot spectral model curve. plot_error(energy_range[, ax, energy_unit, …])Plot spectral model error band. spectral_index(energy[, epsilon])Compute spectral index at given energy. to_dict()Convert to dict. to_sherpa([name])Convert to sherpa.models.PowLaw1D.Methods Documentation
-
__call__(energy)¶ Call evaluate method of derived classes
-
copy()¶ A deep copy.
-
energy_flux(emin, emax)[source]¶ Compute energy flux in given energy range analytically.
\[G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}}E \phi(E)dE = \left. \phi_0 \frac{E_0^2}{-\Gamma + 2} \left( \frac{E}{E_0} \right)^{-\Gamma + 2} \right \vert _{E_{min}}^{E_{max}}\]Parameters: emin, emax :
QuantityLower and upper bound of integration range.
-
energy_flux_error(emin, emax, **kwargs)[source]¶ Compute energy flux in given energy range analytically with error propagation.
Parameters: emin, emax :
QuantityLower and upper bound of integration range.
Returns: energy_flux, energy_flux_error : tuple of
QuantityTuple of energy flux and energy flux error.
-
evaluate_error(energy)¶ Evaluate spectral model with error propagation.
Parameters: energy :
QuantityEnergy at which to evaluate
Returns: flux, flux_error : tuple of
QuantityTuple of flux and flux error.
-
from_dict(val)¶ Create from dict.
-
integral(emin, emax, **kwargs)[source]¶ Integrate power law analytically.
\[F(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}}\phi(E)dE = \left. \phi_0 \frac{E_0}{-\Gamma + 1} \left( \frac{E}{E_0} \right)^{-\Gamma + 1} \right \vert _{E_{min}}^{E_{max}}\]Parameters: emin, emax :
QuantityLower and upper bound of integration range
-
integral_error(emin, emax, **kwargs)[source]¶ Integrate power law analytically with error propagation.
Parameters: emin, emax :
QuantityLower and upper bound of integration range.
Returns: integral, integral_error : tuple of
QuantityTuple of integral flux and integral flux error.
-
inverse(value)[source]¶ Return energy for a given function value of the spectral model.
Parameters: value :
QuantityFunction value of the spectral model.
-
plot(energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model curve.
kwargs are forwarded to
matplotlib.pyplot.plotParameters: ax :
Axes, optionalAxis
energy_range :
QuantityPlot range
energy_unit : str,
Unit, optionalUnit of the energy axis
flux_unit : str,
Unit, optionalUnit of the flux axis
energy_power : int, optional
Power of energy to multiply flux axis with
n_points : int, optional
Number of evaluation nodes
Returns: ax :
Axes, optionalAxis
-
plot_error(energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model error band.
Note
This method calls
ax.set_yscale("log", nonposy='clip')andax.set_xscale("log", nonposx='clip')to create a log-log representation. The additional argumentnonposx='clip'avoids artefacts in the plot, when the error band extends to negative values (see also https://github.com/matplotlib/matplotlib/issues/8623).When you call
plt.loglog()orplt.semilogy()explicitely in your plotting code and the error band extends to negative values, it is not shown correctly. To circumvent this issue also useplt.loglog(nonposx='clip', nonposy='clip')orplt.semilogy(nonposy='clip').Parameters: ax :
Axes, optionalAxis
energy_range :
QuantityPlot range
energy_unit : str,
Unit, optionalUnit of the energy axis
flux_unit : str,
Unit, optionalUnit of the flux axis
energy_power : int, optional
Power of energy to multiply flux axis with
n_points : int, optional
Number of evaluation nodes
**kwargs : dict
Keyword arguments forwarded to
matplotlib.pyplot.fill_betweenReturns: ax :
Axes, optionalAxis
-
spectral_index(energy, epsilon=1e-05)¶ Compute spectral index at given energy.
Parameters: energy :
QuantityEnergy at which to estimate the index
epsilon : float
Fractional energy increment to use for determining the spectral index.
Returns: index : float
Estimated spectral index.
-
to_dict()¶ Convert to dict.
-