PowerLaw2¶
-
class
gammapy.spectrum.models.PowerLaw2(amplitude=<Quantity 1.e-12 1 / (cm2 s)>, index=2, emin=<Quantity 0.1 TeV>, emax=<Quantity 100. TeV>)[source]¶ Bases:
gammapy.spectrum.models.SpectralModelSpectral power-law model with integral as amplitude parameter.
See also: https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/source_models.html
\[\phi(E) = F_0 \cdot \frac{\Gamma + 1}{E_{0, max}^{\Gamma + 1} - E_{0, min}^{\Gamma + 1}} \cdot E^{-\Gamma}\]Parameters: index :
QuantitySpectral index \(\Gamma\)
amplitude :
QuantityIntegral flux \(F_0\).
emin :
QuantityLower energy limit \(E_{0, min}\).
emax :
QuantityUpper energy limit \(E_{0, max}\).
Examples
This is how to plot the default
PowerLaw2model:from astropy import units as u from gammapy.spectrum.models import PowerLaw2 pwl2 = PowerLaw2() pwl2.plot(energy_range=[0.1, 100] * u.TeV) plt.show()
Methods Summary
__call__(energy)Call evaluate method of derived classes copy()A deep copy. energy_flux(emin, emax, **kwargs)Compute energy flux in given energy range. energy_flux_error(emin, emax, **kwargs)Compute energy flux in given energy range with error propagation. evaluate(energy, amplitude, index, emin, emax)Evaluate the model (static function). evaluate_error(energy)Evaluate spectral model with error propagation. from_dict(val)Create from dict. integral(emin, emax, **kwargs)Integrate power law analytically. integral_error(emin, emax, **kwargs)Integrate power law analytically with error propagation. inverse(value)Return energy for a given function value of the spectral model. plot(energy_range[, ax, energy_unit, …])Plot spectral model curve. plot_error(energy_range[, ax, energy_unit, …])Plot spectral model error band. spectral_index(energy[, epsilon])Compute spectral index at given energy. to_dict()Convert to dict. to_sherpa([name])Convert to Sherpa model. Methods Documentation
-
__call__(energy)¶ Call evaluate method of derived classes
-
copy()¶ A deep copy.
-
energy_flux(emin, emax, **kwargs)¶ Compute energy flux in given energy range.
\[G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}}E \phi(E)dE\]Parameters: emin, emax :
QuantityLower and upper bound of integration range.
**kwargs : dict
Keyword arguments passed to func:
integrate_spectrum
-
energy_flux_error(emin, emax, **kwargs)¶ Compute energy flux in given energy range with error propagation.
\[G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}}E \phi(E)dE\]Parameters: emin, emax :
QuantityLower bound of integration range.
**kwargs : dict
Keyword arguments passed to
func:`~gammapy.spectrum.integrate_spectrumReturns: energy_flux, energy_flux_error : tuple of
QuantityTuple of energy flux and energy flux error.
-
static
evaluate(energy, amplitude, index, emin, emax)[source]¶ Evaluate the model (static function).
-
evaluate_error(energy)¶ Evaluate spectral model with error propagation.
Parameters: energy :
QuantityEnergy at which to evaluate
Returns: flux, flux_error : tuple of
QuantityTuple of flux and flux error.
-
from_dict(val)¶ Create from dict.
-
integral(emin, emax, **kwargs)[source]¶ Integrate power law analytically.
\[F(E_{min}, E_{max}) = F_0 \cdot \frac{E_{max}^{\Gamma + 1} \ - E_{min}^{\Gamma + 1}}{E_{0, max}^{\Gamma + 1} \ - E_{0, min}^{\Gamma + 1}}\]Parameters: emin, emax :
QuantityLower and upper bound of integration range.
-
integral_error(emin, emax, **kwargs)[source]¶ Integrate power law analytically with error propagation.
Parameters: emin, emax :
QuantityLower and upper bound of integration range.
Returns: integral, integral_error : tuple of
QuantityTuple of integral flux and integral flux error.
-
inverse(value)[source]¶ Return energy for a given function value of the spectral model.
Parameters: value :
QuantityFunction value of the spectral model.
-
plot(energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model curve.
kwargs are forwarded to
matplotlib.pyplot.plotParameters: ax :
Axes, optionalAxis
energy_range :
QuantityPlot range
energy_unit : str,
Unit, optionalUnit of the energy axis
flux_unit : str,
Unit, optionalUnit of the flux axis
energy_power : int, optional
Power of energy to multiply flux axis with
n_points : int, optional
Number of evaluation nodes
Returns: ax :
Axes, optionalAxis
-
plot_error(energy_range, ax=None, energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1', energy_power=0, n_points=100, **kwargs)¶ Plot spectral model error band.
Note
This method calls
ax.set_yscale("log", nonposy='clip')andax.set_xscale("log", nonposx='clip')to create a log-log representation. The additional argumentnonposx='clip'avoids artefacts in the plot, when the error band extends to negative values (see also https://github.com/matplotlib/matplotlib/issues/8623).When you call
plt.loglog()orplt.semilogy()explicitely in your plotting code and the error band extends to negative values, it is not shown correctly. To circumvent this issue also useplt.loglog(nonposx='clip', nonposy='clip')orplt.semilogy(nonposy='clip').Parameters: ax :
Axes, optionalAxis
energy_range :
QuantityPlot range
energy_unit : str,
Unit, optionalUnit of the energy axis
flux_unit : str,
Unit, optionalUnit of the flux axis
energy_power : int, optional
Power of energy to multiply flux axis with
n_points : int, optional
Number of evaluation nodes
**kwargs : dict
Keyword arguments forwarded to
matplotlib.pyplot.fill_betweenReturns: ax :
Axes, optionalAxis
-
spectral_index(energy, epsilon=1e-05)¶ Compute spectral index at given energy.
Parameters: energy :
QuantityEnergy at which to estimate the index
epsilon : float
Fractional energy increment to use for determining the spectral index.
Returns: index : float
Estimated spectral index.
-
to_dict()¶ Convert to dict.
-
to_sherpa(name='default')¶ Convert to Sherpa model.
To be implemented by subclasses
-