lomb_scargle¶
-
gammapy.time.lomb_scargle(time, flux, flux_err, dt, max_period=None, criteria='all', n_bootstraps=100)[source]¶ Compute period and its false alarm probability of a light curve using Lomb-Scargle PSD.
To compute the Lomb-Scargle power spectral density,
astropy.stats.LombScargleis called. For eyesight inspection, the spectral window function is also returned to evaluate the impact of sampling on the periodogram. The criteria for the false alarm probability are both parametric and non-parametric.For an introduction to the Lomb-Scargle periodogram, see Lomb (1976) and Scargle (1982). For an introduction to the false alarm probability of thr Lomb-Scargle periodogram, see the astropy docs.
The function returns a results dictionary with the following content:
pgrid(ndarray) – Period grid in units oftpsd(ndarray) – PSD of Lomb-Scargle at frequencies offgridperiod(float) – Location of the highest periodogram peakfap(float) or (ndarray) – False alarm probability ofperiodunder the null hypothesis of only-noise data for the specified criteria. If criteria is not defined, the false alarm probability of all criteria is returned.swf(ndarray) – Spectral window function
Parameters: time :
ndarrayTime array of the light curve
flux :
ndarrayFlux array of the light curve
flux_err :
ndarrayFlux error array of the light curve
dt : float
Desired resolution of the periodogram and the window function
max_period : float
Maximum period to analyse
criteria : list of str
Select which significance methods you’d like to run (by default all are running) Available:
{'pre', 'cvm', 'nll', 'boot'}prefor pre-defined beta distribution (see Schwarzenberg-Czerny (1998))cvmfor Cramer-von-Mises distance minimisation (see Thieler et at. (2016))nllfor negative logarithmic likelihood minimisationbootfor bootstrap-resampling (see Sueveges (2012)- and
astroML.time_series.lomb_scargle_bootstrap.
n_bootstraps : int
Number of bootstraps resampling
Returns: results :
OrderedDictResults dictionary (see description above).
References
[R3136] Lomb (1976), “Least-squares frequency analysis of unequally spaced data”, Link [R3236] Scargle (1982), “Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data”, Link [R3336] Schwarzenberg-Czerny (1998), “The distribution of empirical periodograms: Lomb-Scargle and PDM spectra”, Link [R3436] Thieler et at. (2016), “RobPer: An R Package to Calculate Periodograms for Light Curves Based on Robust Regression”, Link [R3536] Sueveges (2012), “False Alarm Probability based on bootstrap and extreme-value methods for periodogram peaks”, Link [R3636] Astropy docs, Lomb-Scargle Periodograms, Link