EffectiveAreaTable2D#
- class gammapy.irf.EffectiveAreaTable2D(axes, data=0, unit='', is_pointlike=False, fov_alignment=FoVAlignment.RADEC, meta=None, interp_kwargs=None)[source]#
Bases:
gammapy.irf.core.IRF2D effective area table.
Data format specification: AEFF_2D
- Parameters
- energy_axis_true
MapAxis True energy axis
- offset_axis
MapAxis Field of view offset axis.
- data
Quantity Effective area
- metadict
Meta data
- energy_axis_true
Examples
Here’s an example you can use to learn about this class:
>>> from gammapy.irf import EffectiveAreaTable2D >>> filename = '$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits' >>> aeff = EffectiveAreaTable2D.read(filename, hdu='EFFECTIVE AREA') >>> print(aeff) EffectiveAreaTable2D -------------------- axes : ['energy_true', 'offset'] shape : (42, 6) ndim : 2 unit : m2 dtype : >f4
Here’s another one, created from scratch, without reading a file:
>>> from gammapy.irf import EffectiveAreaTable2D >>> from gammapy.maps import MapAxis >>> energy_axis_true = MapAxis.from_energy_bounds( "0.1 TeV", "100 TeV", nbin=30, name="energy_true" ) >>> offset_axis = MapAxis.from_bounds(0, 5, nbin=4, name="offset") >>> aeff = EffectiveAreaTable2D(axes=[energy_axis_true, offset_axis], data=1e10, unit="cm2") >>> print(aeff) EffectiveAreaTable2D -------------------- axes : ['energy_true', 'offset'] shape : (30, 4) ndim : 2 unit : cm2 dtype : float64
Attributes Summary
MapAxesAlignment of the field of view coordinate axes, see
FoVAlignmentWhether the IRF explicitly depends on offset
Whether the IRF is pointlike of full containment.
Map unit (
Unit)Methods Summary
cumsum(axis_name)Compute cumsum along a given axis
evaluate([method])Evaluate IRF
from_hdulist(hdulist[, hdu, format])Create from
HDUList.from_parametrization([energy_axis_true, ...])Create parametrized effective area.
from_table(table[, format])Read from
Table.integral(axis_name, **kwargs)Compute integral along a given axis
integrate_log_log(axis_name, **kwargs)Integrate along a given axis.
interp_missing_data(axis_name)Interpolate missing data along a given axis
is_allclose(other[, rtol_axes, atol_axes])Compare two data IRFs for equivalency
normalize(axis_name)Normalise data in place along a given axis.
pad(pad_width, axis_name, **kwargs)Pad irf along a given axis.
peek([figsize])Quick-look summary plots.
plot([ax, add_cbar])Plot effective area image.
plot_energy_dependence([ax, offset])Plot effective area versus energy for a given offset.
plot_offset_dependence([ax, energy])Plot effective area versus offset for a given energy.
read(filename[, hdu, format])Read from file.
slice_by_idx(slices)Slice sub IRF from IRF object.
to_hdulist([format])to_table([format])Convert to table
to_table_hdu([format])Convert to
BinTableHDU.to_unit(unit)Convert irf to different unit
write(filename, *args, **kwargs)Write IRF to fits.
Attributes Documentation
- axes#
MapAxes
- data#
- default_interp_kwargs = {'bounds_error': False, 'fill_value': 0.0}#
- default_unit = Unit("m2")#
- fov_alignment#
Alignment of the field of view coordinate axes, see
FoVAlignment
- has_offset_axis#
Whether the IRF explicitly depends on offset
- is_pointlike#
Whether the IRF is pointlike of full containment.
- required_axes = ['energy_true', 'offset']#
- tag = 'aeff_2d'#
Methods Documentation
- cumsum(axis_name)#
Compute cumsum along a given axis
- Parameters
- axis_namestr
Along which axis to integrate.
- Returns
- irf
IRF Cumsum IRF
- irf
- evaluate(method=None, **kwargs)#
Evaluate IRF
- Parameters
- **kwargsdict
Coordinates at which to evaluate the IRF
- methodstr {‘linear’, ‘nearest’}, optional
Interpolation method
- Returns
- array
Quantity Interpolated values
- array
- classmethod from_hdulist(hdulist, hdu=None, format='gadf-dl3')#
Create from
HDUList.- Parameters
- hdulist
HDUList HDU list
- hdustr
HDU name
- format{“gadf-dl3”}
Format specification
- hdulist
- Returns
- irf
IRF IRF class
- irf
- classmethod from_parametrization(energy_axis_true=None, instrument='HESS')[source]#
Create parametrized effective area.
Parametrizations of the effective areas of different Cherenkov telescopes taken from Appendix B of Abramowski et al. (2010), see https://ui.adsabs.harvard.edu/abs/2010MNRAS.402.1342A .
\[A_{eff}(E) = g_1 \left(\frac{E}{\mathrm{MeV}}\right)^{-g_2}\exp{\left(-\frac{g_3}{E}\right)} # noqa: E501\]This method does not model the offset dependence of the effective area, but just assumes that it is constant.
- Parameters
- energy_axis_true
MapAxis Energy binning, analytic function is evaluated at log centers
- instrument{‘HESS’, ‘HESS2’, ‘CTA’}
Instrument name
- energy_axis_true
- Returns
- aeff
EffectiveAreaTable2D Effective area table
- aeff
- classmethod from_table(table, format='gadf-dl3')#
Read from
Table.- Parameters
- table
Table Table with irf data
- format{“gadf-dl3”}
Format specification
- table
- Returns
- irf
IRF IRF class.
- irf
- integral(axis_name, **kwargs)#
Compute integral along a given axis
This method uses interpolation of the cumulative sum.
- Parameters
- axis_namestr
Along which axis to integrate.
- **kwargsdict
Coordinates at which to evaluate the IRF
- Returns
- array
Quantity Returns 2D array with axes offset
- array
- integrate_log_log(axis_name, **kwargs)#
Integrate along a given axis.
This method uses log-log trapezoidal integration.
- Parameters
- axis_namestr
Along which axis to integrate.
- **kwargsdict
Coordinates at which to evaluate the IRF
- Returns
- array
Quantity Returns 2D array with axes offset
- array
- interp_missing_data(axis_name)#
Interpolate missing data along a given axis
- is_allclose(other, rtol_axes=0.001, atol_axes=1e-06, **kwargs)#
Compare two data IRFs for equivalency
- Parameters
- other
gammapy.irfs.IRF The irf to compare against
- rtol_axesfloat
Relative tolerance for the axes comparison.
- atol_axesfloat
Relative tolerance for the axes comparison.
- **kwargsdict
keywords passed to
numpy.allclose
- other
- Returns
- is_allclosebool
Whether the IRF is all close.
- normalize(axis_name)#
Normalise data in place along a given axis.
- Parameters
- axis_namestr
Along which axis to normalize.
- pad(pad_width, axis_name, **kwargs)#
Pad irf along a given axis.
- Parameters
- pad_width{sequence, array_like, int}
Number of pixels padded to the edges of each axis.
- axis_namestr
Which axis to downsample. By default spatial axes are padded.
- **kwargsdict
Keyword argument forwarded to
pad
- Returns
- irf
IRF Padded irf
- irf
- plot_energy_dependence(ax=None, offset=None, **kwargs)[source]#
Plot effective area versus energy for a given offset.
- plot_offset_dependence(ax=None, energy=None, **kwargs)[source]#
Plot effective area versus offset for a given energy.
- classmethod read(filename, hdu=None, format='gadf-dl3')#
Read from file.
- Parameters
- filenamestr or
Path Filename
- hdustr
HDU name
- format{“gadf-dl3”}
Format specification
- filenamestr or
- Returns
- irf
IRF IRF class
- irf
- slice_by_idx(slices)#
Slice sub IRF from IRF object.
- Parameters
- slicesdict
Dict of axes names and
sliceobject pairs. Contains one element for each non-spatial dimension. Axes not specified in the dict are kept unchanged.
- Returns
- sliced
IRF Sliced IRF object.
- sliced
- to_hdulist(format='gadf-dl3')#
- to_table(format='gadf-dl3')#
Convert to table
- Parameters
- format{“gadf-dl3”}
Format specification
- Returns
- table
Table IRF data table
- table
- to_table_hdu(format='gadf-dl3')#
Convert to
BinTableHDU.- Parameters
- format{“gadf-dl3”}
Format specification
- Returns
- hdu
BinTableHDU IRF data table hdu
- hdu
- to_unit(unit)#
Convert irf to different unit
- Parameters
- unit
Unitor str New unit
- unit
- Returns
- irf
IRF IRF with new unit and converted data
- irf