DataStore#
- class gammapy.data.DataStore(hdu_table=None, obs_table=None)[source]#
Bases:
object
IACT data store.
The data selection and access happens using an observation and an HDU index file as described at Data storage.
- Parameters
- hdu_table
HDUIndexTable
HDU index table
- obs_table
ObservationTable
Observation index table
- hdu_table
Examples
Here’s an example how to create a
DataStore
to access H.E.S.S. data:>>> from gammapy.data import DataStore >>> data_store = DataStore.from_dir('$GAMMAPY_DATA/hess-dl3-dr1') >>> data_store.info() Data store: HDU index table: BASE_DIR: /Users/ASinha/Gammapy-dev/gammapy-data/hess-dl3-dr1 Rows: 630 OBS_ID: 20136 -- 47829 HDU_TYPE: ['aeff', 'bkg', 'edisp', 'events', 'gti', 'psf'] HDU_CLASS: ['aeff_2d', 'bkg_3d', 'edisp_2d', 'events', 'gti', 'psf_table'] Observation table: Observatory name: 'N/A' Number of observations: 105
For further usage example see CTA with Gammapy tutorial.
Attributes Summary
Default HDU table filename.
Default observation table filename.
Return the sorted obs_ids contained in the datastore.
Methods Summary
check
([checks])Check index tables and data files.
copy_obs
(obs_id, outdir[, hdu_class, ...])Create a new
DataStore
containing a subset of observations.from_dir
(base_dir[, hdu_table_filename, ...])Create from a directory.
from_events_files
(events_paths[, irfs_paths])Create from a list of event filenames.
from_file
(filename[, hdu_hdu, hdu_obs])Create a Datastore from a FITS file.
get_observations
([obs_id, skip_missing, ...])Generate a
Observations
.info
([show])Print some info.
obs
(obs_id[, required_irf])Access a given
Observation
.Attributes Documentation
- DEFAULT_HDU_TABLE = 'hdu-index.fits.gz'#
Default HDU table filename.
- DEFAULT_OBS_TABLE = 'obs-index.fits.gz'#
Default observation table filename.
- obs_ids#
Return the sorted obs_ids contained in the datastore.
Methods Documentation
- check(checks='all')[source]#
Check index tables and data files.
This is a generator that yields a list of dicts.
- copy_obs(obs_id, outdir, hdu_class=None, verbose=False, overwrite=False)[source]#
Create a new
DataStore
containing a subset of observations.- Parameters
- obs_idarray-like,
ObservationTable
List of observations to copy
- outdirstr, Path
Directory for the new store
- hdu_classlist of str
- verbosebool
Print copied files
- overwritebool
Overwrite
- obs_idarray-like,
- classmethod from_dir(base_dir, hdu_table_filename=None, obs_table_filename=None)[source]#
Create from a directory.
- Parameters
- base_dirstr, Path
Base directory of the data files.
- hdu_table_filenamestr, Path
Filename of the HDU index file. May be specified either relative to
base_dir
or as an absolute path. If None, the default filename will be looked for.- obs_table_filenamestr, Path
Filename of the observation index file. May be specified either relative to
base_dir
or as an absolute path. If None, the default filename will be looked for.
- Returns
- data_store
DataStore
Data store
- data_store
Examples
>>> from gammapy.data import DataStore >>> data_store = DataStore.from_dir('$GAMMAPY_DATA/hess-dl3-dr1')
- classmethod from_events_files(events_paths, irfs_paths=None)[source]#
Create from a list of event filenames.
HDU and observation index tables will be created from the EVENTS header.
IRFs are found only if you have a
CALDB
environment variable set, and if the EVENTS files contain the following keys:TELESCOP
(example:TELESCOP = CTA
)CALDB
(example:CALDB = 1dc
)IRF
(example:IRF = South_z20_50h
)
This method is useful specifically if you want to load data simulated with ctobssim
- Parameters
- events_pathslist of str or Path
List of paths to the events files
- irfs_pathsstr, Path, or list of str or Path
Path to the IRFs file. If a list is provided it must be the same length than
events_paths
. If None the events files have to contain CALDB and IRF header keywords to locate the IRF files, otherwise the IRFs are assumed to be contained in the events files.
- Returns
- data_store
DataStore
Data store
- data_store
Examples
This is how you can access a single event list:
>>> from gammapy.data import DataStore >>> import os >>> os.environ["CALDB"] = os.environ["GAMMAPY_DATA"] + "/cta-1dc/caldb" >>> path = "$GAMMAPY_DATA/cta-1dc/data/baseline/gps/gps_baseline_110380.fits" >>> data_store = DataStore.from_events_files([path]) >>> observations = data_store.get_observations()
You can now analyse this data as usual (see any Gammapy tutorial).
If you have multiple event files, you have to make the list. Here’s an example using
Path.glob
to get a list of all events files in a given folder:>>> import os >>> from pathlib import Path >>> path = Path(os.environ["GAMMAPY_DATA"]) / "cta-1dc/data" >>> paths = list(path.rglob("*.fits")) >>> data_store = DataStore.from_events_files(paths) >>> observations = data_store.get_observations()
>>> #Note that you have a lot of flexibility to select the observations you want, >>> # by having a few lines of custom code to prepare ``paths``, or to select a >>> # subset via a method on the ``data_store`` or the ``observations`` objects. >>> # If you want to generate HDU and observation index files, write the tables to disk::
>>> data_store.hdu_table.write("hdu-index.fits.gz") >>> data_store.obs_table.write("obs-index.fits.gz")
- classmethod from_file(filename, hdu_hdu='HDU_INDEX', hdu_obs='OBS_INDEX')[source]#
Create a Datastore from a FITS file.
The FITS file must contain both index files.
- Parameters
- filenamestr, Path
FITS filename
- hdu_hdustr or int
FITS HDU name or number for the HDU index table
- hdu_obsstr or int
FITS HDU name or number for the observation index table
- Returns
- data_store
DataStore
Data store
- data_store
- get_observations(obs_id=None, skip_missing=False, required_irf='full-enclosure')[source]#
Generate a
Observations
.- Parameters
- obs_idlist
Observation IDs (default of
None
means “all”) If not given, all observations ordered by OBS_ID are returned. This is not necessarily the order in theobs_table
.- skip_missingbool, optional
Skip missing observations, default: False
- required_irflist of str or str
Runs will be added to the list of observations only if the required HDUs are present. Otherwise, the given run will be skipped The list can include the following options:
"events"
: Events"gti"
: Good time intervals"aeff"
: Effective area"bkg"
: Background"edisp"
: Energy dispersion"psf"
: Point Spread Function"rad_max"
: Maximal radius
Alternatively single string can be used as shortcut:
"full-enclosure"
: includes["events", "gti", "aeff", "edisp", "psf", "bkg"]
"point-like"
: includes["events", "gti", "aeff", "edisp"]
"all-optional"
: no HDUs are required, only warnings will be emitted for missing HDUs among all possibilities.
- Returns
- observations
Observations
Container holding a list of
Observation
- observations
- obs(obs_id, required_irf='full-enclosure')[source]#
Access a given
Observation
.- Parameters
- obs_idint
Observation ID.
- required_irflist of str or str
The list can include the following options:
"events"
: Events"gti"
: Good time intervals"aeff"
: Effective area"bkg"
: Background"edisp"
: Energy dispersion"psf"
: Point Spread Function"rad_max"
: Maximal radius
Alternatively single string can be used as shortcut:
"full-enclosure"
: includes["events", "gti", "aeff", "edisp", "psf", "bkg"]
"point-like"
: includes["events", "gti", "aeff", "edisp"]
- Returns
- observation
Observation
Observation container
- observation