Fit#
- class gammapy.modeling.Fit(backend='minuit', optimize_opts=None, covariance_opts=None, confidence_opts=None, store_trace=False)#
Bases:
object
Fit class.
The fit class provides a uniform interface to multiple fitting backends. Currently available: “minuit”, “sherpa” and “scipy”
- Parameters
- backend{“minuit”, “scipy” “sherpa”}
Global backend used for fitting, default : minuit
- optimize_optsdict
Keyword arguments passed to the optimizer. For the
"minuit"
backend see https://iminuit.readthedocs.io/en/stable/reference.html#iminuit.Minuit for a detailed description of the available options. If there is an entry ‘migrad_opts’, those options will be passed toiminuit.Minuit.migrad()
.For the
"sherpa"
backend you can from the options:"simplex"
"levmar"
"moncar"
"gridsearch"
Those methods are described and compared in detail on http://cxc.cfa.harvard.edu/sherpa/methods/index.html. The available options of the optimization methods are described on the following pages in detail:
For the
"scipy"
backend the available options are described in detail here: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html- covariance_optsdict
Covariance options passed to the given backend.
- confidence_optsdict
Extra arguments passed to the backend. E.g.
iminuit.Minuit.minos
supports amaxcall
option. For the scipy backendconfidence_opts
are forwarded tobrentq
. If the confidence estimation fails, the bracketing interval can be adapted by modifying the the upper bound of the interval (b
) value.- store_tracebool
Whether to store the trace of the fit
Attributes Summary
minuit
Iminuit object
Methods Summary
confidence
(datasets, parameter[, sigma, ...])Estimate confidence interval.
covariance
(datasets)Estimate the covariance matrix.
optimize
(datasets)Run the optimization.
run
(datasets)Run all fitting steps.
stat_contour
(datasets, x, y[, numpoints, sigma])Compute stat contour.
stat_profile
(datasets, parameter[, reoptimize])Compute fit statistic profile.
stat_surface
(datasets, x, y[, reoptimize])Compute fit statistic surface.
Attributes Documentation
Methods Documentation