Spectral Fitting¶
In the following you will see how to fit spectral data in OGIP format. The
format is described at 1D counts spectra. An example dataset is available in the
$GAMMAPY_DATA
repo. For a description of the available fit statstics see
Fit statistics.
Getting Started¶
The following example shows how to fit a power law simultaneously to two
simulated crab runs using the SpectrumFit
class.
from gammapy.spectrum import SpectrumObservation, SpectrumObservationList, SpectrumFit
from gammapy.spectrum.models import PowerLaw
import matplotlib.pyplot as plt
path = "$GAMMAPY_DATA/joint-crab/spectra/hess/"
obs1 = SpectrumObservation.read(path + "pha_obs23523.fits")
obs2 = SpectrumObservation.read(path + "pha_obs23592.fits")
obs_list = SpectrumObservationList([obs1, obs2])
model = PowerLaw(
index=2,
amplitude='1e-12 cm-2 s-1 TeV-1',
reference='1 TeV',
)
fit = SpectrumFit(obs_list=obs_list, model=model, stat='wstat')
result = fit.run()
You can check the fit results by looking at
SpectrumFitResult
that is attached to the
SpectrumFit
for each observation.
>>> print(result)
FitResult
backend : minuit
method : minuit
success : True
nfev : 99
total stat : 63.00
message : Optimization terminated successfully.
>>> print(fit.result[0])
Fit result info
---------------
Model: PowerLaw
Parameters:
name value error unit min max
--------- --------- --------- --------------- --------- ---
index 2.761e+00 1.094e-01 nan nan
amplitude 5.118e-11 4.849e-12 1 / (cm2 s TeV) nan nan
reference 1.000e+00 0.000e+00 TeV 0.000e+00 nan
Covariance:
name index amplitude reference
--------- ---------------------- ---------------------- ---------
index 0.011973084948262436 3.3890114528842897e-13 0.0
amplitude 3.3890114528842897e-13 2.3510477262284227e-23 0.0
reference 0.0 0.0 0.0
Statistic: 21.076 (wstat)
Fit Range: [8.79922544e+08 1.00000000e+11] keV
Interactive Sherpa Fit¶
If you want to do something specific that is not handled by the
SpectrumFit
class you can always fit the PHA data directly
using Sherpa. The following example illustrates how to do this with the
example dataset used above. It makes use of the Sherpa datastack module.
from sherpa.astro import datastack
from sherpa.models import PowLaw1D
from gammapy.extern.pathlib import Path
import os
pha1 = str(Path(os.environ["GAMMAPY_DATA"]) / "joint-crab" / "spectra" / "hess" / "pha_obs23592.fits")
pha2 = str(Path(os.environ["GAMMAPY_DATA"]) / "joint-crab" / "spectra" / "hess" / "pha_obs23523.fits")
phalist = ','.join([pha1, pha2])
ds = datastack.DataStack()
ds.load_pha(phalist)
model = PowLaw1D('powlaw1d.default')
model.ampl = 1
model.ref = 1e9
model.gamma = 2
ds.set_source(model*1e-20)
for i in range(1, len(ds.datasets) + 1):
datastack.ignore_bad(i)
datastack.ignore_bad(i, 1)
datastack.set_stat('wstat')
ds.fit()
datastack.covar()
This should give the following output
Datasets = 1, 2
Method = levmar
Statistic = wstat
Initial fit statistic = 250.031
Final fit statistic = 63.0023 at function evaluation 25
Data points = 74
Degrees of freedom = 72
Probability [Q-value] = 0.766494
Reduced statistic = 0.875031
Change in statistic = 187.029
powlaw1d.default.gamma 2.76099 +/- 0.118197
powlaw1d.default.ampl 5.11739 +/- 0.491756
Datasets = 1, 2
Confidence Method = covariance
Iterative Fit Method = None
Fitting Method = levmar
Statistic = wstat
covariance 1-sigma (68.2689%) bounds:
Param Best-Fit Lower Bound Upper Bound
----- -------- ----------- -----------
powlaw1d.default.gamma 2.76099 -0.109432 0.109432
powlaw1d.default.ampl 5.11739 -0.484906 0.484906