ImageProfile

class gammapy.estimators.ImageProfile(table)[source]

Bases: object

Image profile class.

The image profile data is stored in Table object, with the following columns:

  • x_ref Coordinate bin center (required).

  • x_min Coordinate bin minimum (optional).

  • x_max Coordinate bin maximum (optional).

  • profile Image profile data (required).

  • profile_err Image profile data error (optional).

Parameters
tableTable

Table instance with the columns specified as above.

Attributes Summary

profile

Image profile quantity.

profile_err

Image profile error quantity.

x_max

Max.

x_min

Min.

x_ref

Reference x coordinates.

Methods Summary

normalize([mode])

Normalize profile to peak value or integral.

peek([figsize])

Show image profile and error.

plot([ax])

Plot image profile.

plot_err([ax])

Plot image profile error as band.

smooth([kernel, radius])

Smooth profile with error propagation.

Attributes Documentation

profile

Image profile quantity.

profile_err

Image profile error quantity.

x_max

Max. x coordinates.

x_min

Min. x coordinates.

x_ref

Reference x coordinates.

Methods Documentation

normalize(mode='peak')[source]

Normalize profile to peak value or integral.

Parameters
mode[‘integral’, ‘peak’]

Normalize image profile so that it integrates to unity (‘integral’) or the maximum value corresponds to one (‘peak’).

Returns
profileImageProfile

Normalized image profile.

peek(figsize=(8, 4.5), **kwargs)[source]

Show image profile and error.

Parameters
**kwargsdict

Keyword arguments passed to ImageProfile.plot_profile()

Returns
axAxes

Axes object

plot(ax=None, **kwargs)[source]

Plot image profile.

Parameters
axAxes

Axes object

**kwargsdict

Keyword arguments passed to plot

Returns
axAxes

Axes object

plot_err(ax=None, **kwargs)[source]

Plot image profile error as band.

Parameters
axAxes

Axes object

**kwargsdict

Keyword arguments passed to plt.fill_between()

Returns
axAxes

Axes object

smooth(kernel='box', radius='0.1 deg', **kwargs)[source]

Smooth profile with error propagation.

Smoothing is described by a convolution:

\[x_j = \sum_i x_{(j - i)} h_i\]

Where \(h_i\) are the coefficients of the convolution kernel.

The corresponding error on \(x_j\) is then estimated using Gaussian error propagation, neglecting correlations between the individual \(x_{(j - i)}\):

\[\Delta x_j = \sqrt{\sum_i \Delta x^{2}_{(j - i)} h^{2}_i}\]
Parameters
kernel{‘gauss’, ‘box’}

Kernel shape

radiusQuantity, str or float

Smoothing width given as quantity or float. If a float is given it is interpreted as smoothing width in pixels. If an (angular) quantity is given it is converted to pixels using xref[1] - x_ref[0].

kwargsdict

Keyword arguments passed to uniform_filter (‘box’) and gaussian_filter (‘gauss’).

Returns
profileImageProfile

Smoothed image profile.