GeneralizedGaussianSpatialModel¶
-
class
gammapy.modeling.models.GeneralizedGaussianSpatialModel(**kwargs)[source]¶ Bases:
gammapy.modeling.models.SpatialModelTwo-dimensional Generealized Gaussian model.
For more information see Generalized Gaussian Spatial Model.
- Parameters
- lon_0, lat_0
Angle Center position
- r_0
Angle Length of the major semiaxis, in angular units.
- eta
float Shape parameter whitin (0, 1]. Special cases for disk: ->0, Gaussian: 0.5, Laplacian:1
- e
float Eccentricity (\(0< e< 1\)).
- phi
Angle Rotation angle \(\phi\): of the major semiaxis. Increases counter-clockwise from the North direction.
- frame{“icrs”, “galactic”}
Center position coordinate frame
- lon_0, lat_0
Attributes Summary
A model parameter.
A model parameter.
Evaluation radius (
Angle).A model parameter.
A model parameter.
Parameters (
Parameters)A model parameter.
Spatial model center position
Get 95% containment position error as (
EllipseSkyRegion)A model parameter.
Methods Summary
__call__(lon, lat[, energy])Call evaluate method
copy()A deep copy.
create(tag[, model_type])Create a model instance.
evaluate(lon, lat, lon_0, lat_0, r_0, eta, …)evaluate_geom(geom)from_dict(data)from_parameters(parameters, **kwargs)Create model from parameter list
integrate_geom(geom)Integrate model on
Geom.plot([ax, geom])Plot spatial model.
plot_error([ax])Plot position error
plot_grid([geom])Plot spatial model energy slices in a grid.
plot_interative([ax, geom])Plot spatial model.
to_dict([full_output])Create dict for YAML serilisation
to_region(**kwargs)Model outline (
EllipseSkyRegion).Attributes Documentation
-
covariance¶
-
default_parameters= <gammapy.modeling.parameter.Parameters object>¶
-
e¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.
-
eta¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.
-
is_energy_dependent¶
-
lat_0¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.
-
lon_0¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.
-
parameters¶ Parameters (
Parameters)
-
phi¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.
-
phi_0¶
-
position¶ Spatial model center position
-
position_error¶ Get 95% containment position error as (
EllipseSkyRegion)
-
r_0¶ A model parameter.
Note that the parameter value has been split into a factor and scale like this:
value = factor x scale
Users should interact with the
value,quantityorminandmaxproperties and consider the fact that there is afactor`andscalean implementation detail.That was introduced for numerical stability in parameter and error estimation methods, only in the Gammapy optimiser interface do we interact with the
factor,factor_minandfactor_maxproperties, i.e. the optimiser “sees” the well-scaled problem.
-
tag= ['GeneralizedGaussianSpatialModel', 'gauss-general']¶
-
type¶
Methods Documentation
-
__call__(lon, lat, energy=None)¶ Call evaluate method
-
copy()¶ A deep copy.
-
static
create(tag, model_type=None, *args, **kwargs)¶ Create a model instance.
Examples
>>> from gammapy.modeling.models import Model >>> spectral_model = Model.create("pl-2", model_type="spectral", amplitude="1e-10 cm-2 s-1", index=3) >>> type(spectral_model) gammapy.modeling.models.spectral.PowerLaw2SpectralModel
-
evaluate_geom(geom)¶
-
classmethod
from_dict(data)¶
-
classmethod
from_parameters(parameters, **kwargs)¶ Create model from parameter list
- Parameters
- parameters
Parameters Parameters for init
- parameters
- Returns
- model
Model Model instance
- model
-
plot(ax=None, geom=None, **kwargs)¶ Plot spatial model.
-
plot_error(ax=None, **kwargs)¶ Plot position error
-
plot_grid(geom=None, **kwargs)¶ Plot spatial model energy slices in a grid.
-
plot_interative(ax=None, geom=None, **kwargs)¶ Plot spatial model.
-
to_dict(full_output=False)¶ Create dict for YAML serilisation
-
to_region(**kwargs)[source]¶ Model outline (
EllipseSkyRegion).