Gauss2DPDF¶
-
class
gammapy.image.models.
Gauss2DPDF
(sigma=1)[source]¶ Bases:
object
2D symmetric Gaussian PDF.
Reference: http://en.wikipedia.org/wiki/Multivariate_normal_distribution#Bivariate_case
Parameters: sigma : float
Gaussian width.
Attributes Summary
amplitude
PDF amplitude at the center (float) Methods Summary
__call__
(x[, y])dp / (dx dy) at position (x, y) containment_fraction
(theta)Containment fraction. containment_radius
(containment_fraction)Containment angle for a given containment fraction. dpdtheta2
(theta2)dp / dtheta2 at position theta2 = theta ^ 2 gauss_convolve
(sigma)Convolve with another Gaussian 2D PDF. Attributes Documentation
-
amplitude
¶ PDF amplitude at the center (float)
Methods Documentation
-
__call__
(x, y=0)[source]¶ dp / (dx dy) at position (x, y)
Parameters: x :
ndarray
x coordinate
y :
ndarray
, optionaly coordinate
Returns: dpdxdy :
ndarray
dp / (dx dy)
-
containment_fraction
(theta)[source]¶ Containment fraction.
Parameters: theta :
ndarray
Offset
Returns: containment_fraction :
ndarray
Containment fraction
-
containment_radius
(containment_fraction)[source]¶ Containment angle for a given containment fraction.
Parameters: containment_fraction :
ndarray
Containment fraction
Returns: containment_radius :
ndarray
Containment radius
-
dpdtheta2
(theta2)[source]¶ dp / dtheta2 at position theta2 = theta ^ 2
Parameters: theta2 :
ndarray
Offset squared
Returns: dpdtheta2 :
ndarray
dp / dtheta2
-
gauss_convolve
(sigma)[source]¶ Convolve with another Gaussian 2D PDF.
Parameters: sigma :
ndarray
or floatGaussian width of the new Gaussian 2D PDF to covolve with.
Returns: gauss_convolve :
Gauss2DPDF
Convolution of both Gaussians.
-