Sphere2D¶
-
class
gammapy.image.models.
Sphere2D
(amplitude, x_0, y_0, r_0, normed=True, **constraints)[source]¶ Bases:
astropy.modeling.Fittable2DModel
Projected homogeneous radiating sphere model.
This model can be used for a simple PWN source morphology.
Parameters: amplitude : float
Value of the integral of the sphere function
x_0 : float
x position center of the sphere
y_0 : float
y position center of the sphere
r_0 : float
Radius of the sphere
normed : bool (True)
If set the amplitude parameter corresponds to the integral of the function. If not set the ‘amplitude’ parameter corresponds to the peak value of the function (value at r=0).
Notes
Model formula with integral normalization:
f(r)=A34πr30⋅{√r20−r2:r≤r00:r>r0Model formula with peak normalization:
f(r)=A1r0⋅{√r20−r2:r≤r00:r>r0Examples
import numpy as np import matplotlib.pyplot as plt from gammapy.image.models import Sphere2D sphere = Sphere2D(amplitude=100, x_0=25, y_0=25, r_0=20) y, x = np.mgrid[0:50, 0:50] plt.imshow(sphere(x, y), origin='lower', interpolation='none') plt.xlabel('x (pix)') plt.ylabel('y (pix)') plt.colorbar(label='Brightness (A.U.)') plt.grid(False) plt.show()
(Source code, png, hires.png, pdf)
Attributes Summary
amplitude
param_names
r_0
x_0
y_0
Methods Summary
evaluate
(x, y, amplitude, x_0, y_0, r_0)Two dimensional Sphere model function normed to integral evaluate_peak_norm
(x, y, amplitude, x_0, ...)Two dimensional Sphere model function normed to peak value Attributes Documentation
-
amplitude
¶
-
param_names
= ('amplitude', 'x_0', 'y_0', 'r_0')¶
-
r_0
¶
-
x_0
¶
-
y_0
¶
Methods Documentation
-