radial_profile¶
-
gammapy.image.
radial_profile
(image, center, radius)[source]¶ Image radial profile.
TODO: show example and explain handling of “overflow” and “underflow” bins (see
radial_profile_label_image
docstring).Calls
numpy.digitize
to compute a label image and thenscipy.ndimage.sum
to do measurements.Parameters: image :
SkyImage
Image
center :
SkyCoord
Center position
radius :
Angle
Offset bin edge array.
Returns: table :
QTable
Table with the following fields that define the binning:
RADIUS_BIN_ID
: Integer bin ID (starts at1
).RADIUS_MEAN
: Radial bin centerRADIUS_MIN
: Radial bin minimum edgeRADIUS_MAX
: Radial bin maximum edge
And the following measurements from the pixels in each bin:
N_PIX
: Number of pixelsSUM
: Sum of pixel valuesMEAN
: Mean of pixel values, computed asSUM / N_PIX
Examples
Make some example data:
from astropy.coordinates import Angle from gammapy.image import SkyImage image = SkyImage.empty() image.fill(value=1) center = image.center radius = Angle([0.1, 0.2, 0.4, 0.5, 1.0], 'deg')
Compute and print a radial profile:
from gammapy.image import radial_profile table = radial_profile(image, center, radius) table.pprint()
If your measurement represents counts, you could e.g. use this method to compute errors:
import numpy as np table['SUM_ERR'] = np.sqrt(table['SUM']) table['MEAN_ERR'] = table['SUM_ERR'] / table['N_PIX']
If you need to do special measurements or error computation in each bin with access to the pixel values, you could get the label image and then do the measurements yourself:
labels = radial_profile_label_image(image, center, radius) labels.show()