Ring background map#

Create an excess (gamma-ray events) and a significance map extracting a ring background.

Context#

One of the challenges of IACT analysis is accounting for the large residual hadronic emission. An excess map, assumed to be a map of only gamma-ray events, requires a good estimate of the background. However, in the absence of a solid template bkg model it is not possible to obtain reliable background model a priori. It was often found necessary in classical cherenkov astronomy to perform a local renormalization of the existing templates, usually with a ring kernel. This assumes that most of the events are background and requires to have an exclusion mask to remove regions with bright signal from the estimation. To read more about this method, see here.

Objective#

Create an excess (gamma-ray events) map of MSH 15-52 as well as a significance map to determine how solid the signal is.

Proposed approach#

The analysis workflow is roughly:

The normalised background thus obtained can be used for general modelling and fitting.

Setup#

As usual, we’ll start with some general imports…

import logging

# %matplotlib inline
import astropy.units as u
from astropy.coordinates import SkyCoord
from regions import CircleSkyRegion
import matplotlib.pyplot as plt
from gammapy.analysis import Analysis, AnalysisConfig
from gammapy.datasets import MapDatasetOnOff
from gammapy.estimators import ExcessMapEstimator
from gammapy.makers import RingBackgroundMaker
from gammapy.visualization import plot_distribution
from gammapy.utils.check import check_tutorials_setup

log = logging.getLogger(__name__)

Check setup#

check_tutorials_setup()
System:

        python_executable      : /home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/bin/python
        python_version         : 3.9.20
        machine                : x86_64
        system                 : Linux


Gammapy package:

        version                : 1.3
        path                   : /home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/lib/python3.9/site-packages/gammapy


Other packages:

        numpy                  : 1.26.4
        scipy                  : 1.13.1
        astropy                : 5.2.2
        regions                : 0.8
        click                  : 8.1.7
        yaml                   : 6.0.2
        IPython                : 8.18.1
        jupyterlab             : not installed
        matplotlib             : 3.9.2
        pandas                 : not installed
        healpy                 : 1.17.3
        iminuit                : 2.30.1
        sherpa                 : 4.16.1
        naima                  : 0.10.0
        emcee                  : 3.1.6
        corner                 : 2.2.3
        ray                    : 2.39.0


Gammapy environment variables:

        GAMMAPY_DATA           : /home/runner/work/gammapy-docs/gammapy-docs/gammapy-datasets/1.3

Creating the config file#

Now, we create a config file for out analysis. You may load this from disc if you have a pre-defined config file.

In this example, we will use a few H.E.S.S. runs on the pulsar wind nebula, MSH 1552

# source_pos = SkyCoord.from_name("MSH 15-52")
source_pos = SkyCoord(228.32, -59.08, unit="deg")

config = AnalysisConfig()
# Select observations - 2.5 degrees from the source position
config.observations.datastore = "$GAMMAPY_DATA/hess-dl3-dr1/"
config.observations.obs_cone = {
    "frame": "icrs",
    "lon": source_pos.ra,
    "lat": source_pos.dec,
    "radius": 2.5 * u.deg,
}

config.datasets.type = "3d"
config.datasets.geom.wcs.skydir = {
    "lon": source_pos.ra,
    "lat": source_pos.dec,
    "frame": "icrs",
}  # The WCS geometry - centered on MSH 15-52
config.datasets.geom.wcs.width = {"width": "3 deg", "height": "3 deg"}
config.datasets.geom.wcs.binsize = "0.02 deg"

# Cutout size (for the run-wise event selection)
config.datasets.geom.selection.offset_max = 2.5 * u.deg

# We now fix the energy axis for the counts map - (the reconstructed energy binning)
config.datasets.geom.axes.energy.min = "0.5 TeV"
config.datasets.geom.axes.energy.max = "10 TeV"
config.datasets.geom.axes.energy.nbins = 10

# We need to extract the ring for each observation separately, hence, no stacking at this stage
config.datasets.stack = False

print(config)
AnalysisConfig

    general:
        log:
            level: info
            filename: null
            filemode: null
            format: null
            datefmt: null
        outdir: .
        n_jobs: 1
        datasets_file: null
        models_file: null
    observations:
        datastore: /home/runner/work/gammapy-docs/gammapy-docs/gammapy-datasets/1.3/hess-dl3-dr1
        obs_ids: []
        obs_file: null
        obs_cone:
            frame: icrs
            lon: 228.32 deg
            lat: -59.08 deg
            radius: 2.5 deg
        obs_time:
            start: null
            stop: null
        required_irf:
        - aeff
        - edisp
        - psf
        - bkg
    datasets:
        type: 3d
        stack: false
        geom:
            wcs:
                skydir:
                    frame: icrs
                    lon: 228.32 deg
                    lat: -59.08 deg
                binsize: 0.02 deg
                width:
                    width: 3.0 deg
                    height: 3.0 deg
                binsize_irf: 0.2 deg
            selection:
                offset_max: 2.5 deg
            axes:
                energy:
                    min: 0.5 TeV
                    max: 10.0 TeV
                    nbins: 10
                energy_true:
                    min: 0.5 TeV
                    max: 20.0 TeV
                    nbins: 16
        map_selection:
        - counts
        - exposure
        - background
        - psf
        - edisp
        background:
            method: null
            exclusion: null
            parameters: {}
        safe_mask:
            methods:
            - aeff-default
            parameters: {}
        on_region:
            frame: null
            lon: null
            lat: null
            radius: null
        containment_correction: true
    fit:
        fit_range:
            min: null
            max: null
    flux_points:
        energy:
            min: null
            max: null
            nbins: null
        source: source
        parameters:
            selection_optional: all
    excess_map:
        correlation_radius: 0.1 deg
        parameters: {}
        energy_edges:
            min: null
            max: null
            nbins: null
    light_curve:
        time_intervals:
            start: null
            stop: null
        energy_edges:
            min: null
            max: null
            nbins: null
        source: source
        parameters:
            selection_optional: all
    metadata:
        creator: Gammapy 1.3
        date: '2024-11-26T10:11:20.034778'
        origin: null

Getting the reduced dataset#

We now use the config file to do the initial data reduction which will then be used for a ring extraction

Create the config:

analysis = Analysis(config)

# for this specific case,w e do not need fine bins in true energy
analysis.config.datasets.geom.axes.energy_true = (
    analysis.config.datasets.geom.axes.energy
)

# First get the required observations
analysis.get_observations()

print(analysis.config)
AnalysisConfig

    general:
        log:
            level: INFO
            filename: null
            filemode: null
            format: null
            datefmt: null
        outdir: .
        n_jobs: 1
        datasets_file: null
        models_file: null
    observations:
        datastore: /home/runner/work/gammapy-docs/gammapy-docs/gammapy-datasets/1.3/hess-dl3-dr1
        obs_ids: []
        obs_file: null
        obs_cone:
            frame: icrs
            lon: 228.32 deg
            lat: -59.08 deg
            radius: 2.5 deg
        obs_time:
            start: null
            stop: null
        required_irf:
        - aeff
        - edisp
        - psf
        - bkg
    datasets:
        type: 3d
        stack: false
        geom:
            wcs:
                skydir:
                    frame: icrs
                    lon: 228.32 deg
                    lat: -59.08 deg
                binsize: 0.02 deg
                width:
                    width: 3.0 deg
                    height: 3.0 deg
                binsize_irf: 0.2 deg
            selection:
                offset_max: 2.5 deg
            axes:
                energy:
                    min: 0.5 TeV
                    max: 10.0 TeV
                    nbins: 10
                energy_true:
                    min: 0.5 TeV
                    max: 10.0 TeV
                    nbins: 10
        map_selection:
        - counts
        - exposure
        - background
        - psf
        - edisp
        background:
            method: null
            exclusion: null
            parameters: {}
        safe_mask:
            methods:
            - aeff-default
            parameters: {}
        on_region:
            frame: null
            lon: null
            lat: null
            radius: null
        containment_correction: true
    fit:
        fit_range:
            min: null
            max: null
    flux_points:
        energy:
            min: null
            max: null
            nbins: null
        source: source
        parameters:
            selection_optional: all
    excess_map:
        correlation_radius: 0.1 deg
        parameters: {}
        energy_edges:
            min: null
            max: null
            nbins: null
    light_curve:
        time_intervals:
            start: null
            stop: null
        energy_edges:
            min: null
            max: null
            nbins: null
        source: source
        parameters:
            selection_optional: all
    metadata:
        creator: Gammapy 1.3
        date: '2024-11-26T10:11:20.094200'
        origin: null

Data extraction:

Extracting the ring background#

Since the ring background is extracted from real off events, we need to use the Wstat statistics in this case. For this, we will use the MapDatasetOnOff and the RingBackgroundMaker classes.

Create exclusion mask#

First, we need to create an exclusion mask on the known sources. In this case, we need to mask only MSH 15-52 but this depends on the sources present in our field of view.

# get the geom that we use
geom = analysis.datasets[0].counts.geom
energy_axis = analysis.datasets[0].counts.geom.axes["energy"]
geom_image = geom.to_image().to_cube([energy_axis.squash()])

# Make the exclusion mask
regions = CircleSkyRegion(center=source_pos, radius=0.4 * u.deg)
exclusion_mask = ~geom_image.region_mask([regions])
exclusion_mask.sum_over_axes().plot()
plt.show()
ring background

For the present analysis, we use a ring with an inner radius of 0.5 deg and width of 0.3 deg.

ring_maker = RingBackgroundMaker(
    r_in="0.5 deg", width="0.3 deg", exclusion_mask=exclusion_mask
)

Create a stacked dataset#

Now, we extract the background for each dataset and then stack the maps together to create a single stacked map for further analysis

for dataset in analysis.datasets:
    # Ring extracting makes sense only for 2D analysis
    dataset_on_off = ring_maker.run(dataset.to_image())
    stacked_on_off.stack(dataset_on_off)

This stacked_on_off has on and off counts and acceptance maps which we will use in all further analysis. The acceptance and acceptance_off maps are the system acceptance of gamma-ray like events in the on and off regions respectively.

MapDatasetOnOff
---------------

  Name                            : stacked

  Total counts                    : 41803
  Total background counts         : 40671.90
  Total excess counts             : 1131.10

  Predicted counts                : 40672.37
  Predicted background counts     : 40672.37
  Predicted excess counts         : nan

  Exposure min                    : 1.15e+09 m2 s
  Exposure max                    : 1.33e+10 m2 s

  Number of total bins            : 22500
  Number of fit bins              : 22500

  Fit statistic type              : wstat
  Fit statistic value (-2 log(L)) : 26475.50

  Number of models                : 0
  Number of parameters            : 0
  Number of free parameters       : 0

  Total counts_off                : 87621184
  Acceptance                      : 44755
  Acceptance off                  : 96374320

Compute correlated significance and correlated excess maps#

We need to convolve our maps with an appropriate smoothing kernel. The significance is computed according to the Li & Ma expression for ON and OFF Poisson measurements, see here.

Also, since the off counts are obtained with a ring background estimation, and are thus already correlated, we specify correlate_off=False to avoid over correlation.

# Using a convolution radius of 0.04 degrees
estimator = ExcessMapEstimator(0.04 * u.deg, selection_optional=[], correlate_off=False)
lima_maps = estimator.run(stacked_on_off)

significance_map = lima_maps["sqrt_ts"]
excess_map = lima_maps["npred_excess"]

# We can plot the excess and significance maps
fig, (ax1, ax2) = plt.subplots(
    figsize=(11, 4), subplot_kw={"projection": lima_maps.geom.wcs}, ncols=2
)
ax1.set_title("Significance map")
significance_map.plot(ax=ax1, add_cbar=True)
ax2.set_title("Excess map")
excess_map.plot(ax=ax2, add_cbar=True)
plt.show()
Significance map, Excess map

It is often important to look at the significance distribution outside the exclusion region to check that the background estimation is not contaminated by gamma-ray events. This can be the case when exclusion regions are not large enough. Typically, we expect the off distribution to be a standard normal distribution. To compute the significance distribution outside the exclusion region, we can recompute the maps after adding a mask_fit to our dataset.

# Mask the regions with gamma-ray emission
stacked_on_off.mask_fit = exclusion_mask
lima_maps2 = estimator.run(stacked_on_off)
significance_map_off = lima_maps2["sqrt_ts"]

kwargs_axes = {"xlabel": "Significance", "yscale": "log", "ylim": (1e-3, 1)}
ax, _ = plot_distribution(
    significance_map,
    kwargs_hist={
        "density": True,
        "alpha": 0.5,
        "color": "red",
        "label": "all bins",
        "bins": 51,
    },
    kwargs_axes=kwargs_axes,
)

ax, res = plot_distribution(
    significance_map_off,
    ax=ax,
    func="norm",
    kwargs_hist={
        "density": True,
        "alpha": 0.5,
        "color": "blue",
        "label": "off bins",
        "bins": 51,
    },
    kwargs_axes=kwargs_axes,
)

plt.show()
# sphinx_gallery_thumbnail_number = 2
ring background
/home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/lib/python3.9/site-packages/gammapy/stats/counts_statistic.py:398: RuntimeWarning: invalid value encountered in multiply
  return self.alpha * self.n_off
/home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/lib/python3.9/site-packages/gammapy/stats/fit_statistics.py:207: RuntimeWarning: invalid value encountered in multiply
  C = alpha * (n_on + n_off) - (1 + alpha) * mu_sig
/home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/lib/python3.9/site-packages/gammapy/stats/fit_statistics.py:208: RuntimeWarning: invalid value encountered in multiply
  D = np.sqrt(C**2 + 4 * alpha * (alpha + 1) * n_off * mu_sig)

Total running time of the script: (0 minutes 12.858 seconds)

Gallery generated by Sphinx-Gallery