Modelling#

Multiple datasets and models interaction in Gammapy.

Aim#

The main aim of this tutorial is to illustrate model management in Gammapy, specially how to distribute multiple models across multiple datasets. We also show some convenience functions built in gammapy for handling multiple model components.

Note: Since gammapy v0.18, the responsibility of model management is left totally upon the user. All models, including background models, have to be explicitly defined. To keep track of the used models, we define a global Models object (which is a collection of SkyModel objects) to which we append and delete models.

Prerequisites#

  • Knowledge of 3D analysis, dataset reduction and fitting see the Low level API tutorial.

  • Understanding of gammapy models, see the Models tutorial.

  • Analysis of the Galactic Center with Fermi-LAT, shown in the Fermi-LAT with Gammapy tutorial.

  • Analysis of the Galactic Center with CTA-DC1 , shown in the 3D detailed analysis tutorial.

Proposed approach#

To show how datasets interact with models, we use two pre-computed datasets on the galactic center, one from Fermi-LAT and the other from simulated CTA (DC1) data. We demonstrate

  • Adding background models for each dataset

  • Sharing a model between multiple datasets

We then load models from the Fermi 3FHL catalog to show some convenience handling for multiple Models together

  • accessing models from a catalog

  • selecting models contributing to a given region

  • adding and removing models

  • freezing and thawing multiple model parameters together

  • serialising models

For computational purposes, we do not perform any fitting in this notebook.

Setup#

from astropy import units as u
from astropy.coordinates import SkyCoord
from regions import CircleSkyRegion
import matplotlib.pyplot as plt

# %matplotlib inline
from IPython.display import display
from gammapy.catalog import SourceCatalog3FHL
from gammapy.datasets import Datasets, MapDataset
from gammapy.maps import Map
from gammapy.modeling.models import (
    FoVBackgroundModel,
    Models,
    PowerLawNormSpectralModel,
    SkyModel,
    TemplateSpatialModel,
    create_fermi_isotropic_diffuse_model,
)

Check setup#

from gammapy.utils.check import check_tutorials_setup

check_tutorials_setup()
System:

        python_executable      : /home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/bin/python
        python_version         : 3.9.20
        machine                : x86_64
        system                 : Linux


Gammapy package:

        version                : 1.3
        path                   : /home/runner/work/gammapy-docs/gammapy-docs/gammapy/.tox/build_docs/lib/python3.9/site-packages/gammapy


Other packages:

        numpy                  : 1.26.4
        scipy                  : 1.13.1
        astropy                : 5.2.2
        regions                : 0.8
        click                  : 8.1.7
        yaml                   : 6.0.2
        IPython                : 8.18.1
        jupyterlab             : not installed
        matplotlib             : 3.9.2
        pandas                 : not installed
        healpy                 : 1.17.3
        iminuit                : 2.30.1
        sherpa                 : 4.16.1
        naima                  : 0.10.0
        emcee                  : 3.1.6
        corner                 : 2.2.3
        ray                    : 2.39.0


Gammapy environment variables:

        GAMMAPY_DATA           : /home/runner/work/gammapy-docs/gammapy-docs/gammapy-datasets/1.3

Read the datasets#

First, we read some precomputed Fermi and CTA datasets, and create a Datasets object containing the two.

fermi_dataset = MapDataset.read(
    "$GAMMAPY_DATA/fermi-3fhl-gc/fermi-3fhl-gc.fits.gz", name="fermi_dataset"
)
cta_dataset = MapDataset.read(
    "$GAMMAPY_DATA/cta-1dc-gc/cta-1dc-gc.fits.gz", name="cta_dataset"
)
datasets = Datasets([fermi_dataset, cta_dataset])

Plot the counts maps to see the region

plt.figure(figsize=(15, 5))
ax1 = plt.subplot(121, projection=fermi_dataset.counts.geom.wcs)
ax2 = plt.subplot(122, projection=cta_dataset.counts.geom.wcs)


datasets[0].counts.sum_over_axes().smooth(0.05 * u.deg).plot(
    ax=ax1, stretch="sqrt", add_cbar=True
)
datasets[1].counts.sum_over_axes().smooth(0.05 * u.deg).plot(
    ax=ax2, stretch="sqrt", add_cbar=True
)
ax1.set_title("Fermi counts")
ax2.set_title("CTA counts")
plt.show()
Fermi counts, CTA counts
display(datasets.info_table(cumulative=False))
     name     counts     excess     ... n_fit_bins stat_type stat_sum
                                    ...
------------- ------ -------------- ... ---------- --------- --------
fermi_dataset  27727 3792.244140625 ...     633600      cash      nan
  cta_dataset 104317  12809.3046875 ...     691680      cash      nan
print(datasets)
Datasets
--------

Dataset 0:

  Type       : MapDataset
  Name       : fermi_dataset
  Instrument :
  Models     :

Dataset 1:

  Type       : MapDataset
  Name       : cta_dataset
  Instrument :
  Models     :

Note that while the datasets have an associated background map, they currently do not have any associated background model. This will be added in the following section

Assigning background models to datasets#

For any IACT dataset (in this case cta_dataset) , we have to create a FoVBackgroundModel. Note that FoVBackgroundModel must be specified to one dataset only

For Fermi-LAT, the background contribution is taken from a diffuse isotropic template. To convert this into a gammapy SkyModel, use the helper function create_fermi_isotropic_diffuse_model

To attach a model on a particular dataset it is necessary to specify the datasets_names. Otherwise, by default, the model will be applied to all the datasets in datasets

First, we must create a global Models object which acts as the container for all models used in a particular analysis

models = Models()  # global models object

# Create the FoV background model for CTA data

bkg_model = FoVBackgroundModel(dataset_name=cta_dataset.name)
models.append(bkg_model)  # Add the bkg_model to models()

# Read the fermi isotropic diffuse background model

diffuse_iso = create_fermi_isotropic_diffuse_model(
    filename="$GAMMAPY_DATA/fermi_3fhl/iso_P8R2_SOURCE_V6_v06.txt",
)
diffuse_iso.datasets_names = fermi_dataset.name  # specifying the dataset name

models.append(diffuse_iso)  # Add the fermi_bkg_model to models()

# Now, add the models to datasets
datasets.models = models

# You can see that each dataset lists the correct associated models
print(datasets)
Datasets
--------

Dataset 0:

  Type       : MapDataset
  Name       : fermi_dataset
  Instrument :
  Models     : ['fermi-diffuse-iso']

Dataset 1:

  Type       : MapDataset
  Name       : cta_dataset
  Instrument :
  Models     : ['cta_dataset-bkg']

Add a model on multiple datasets#

In this section, we show how to add a model to multiple datasets. For this, we specify a list of datasets_names to the model. Alternatively, not specifying any datasets_names will add it to all the datasets.

For this example, we use a template model of the galactic diffuse emission to be shared between the two datasets.

# Create the diffuse model
diffuse_galactic_fermi = Map.read("$GAMMAPY_DATA/fermi-3fhl-gc/gll_iem_v06_gc.fits.gz")

template_diffuse = TemplateSpatialModel(
    diffuse_galactic_fermi, normalize=False
)  # the template model in this case is already a full 3D model, it should not be normalised

diffuse_iem = SkyModel(
    spectral_model=PowerLawNormSpectralModel(),
    spatial_model=template_diffuse,
    name="diffuse-iem",
    datasets_names=[
        cta_dataset.name,
        fermi_dataset.name,
    ],  # specifying list of dataset names
)  # A power law spectral correction is applied in this case

# Now, add the diffuse model to the global models list
models.append(diffuse_iem)

# add it to the datasets, and inspect
datasets.models = models
print(datasets)
Datasets
--------

Dataset 0:

  Type       : MapDataset
  Name       : fermi_dataset
  Instrument :
  Models     : ['fermi-diffuse-iso', 'diffuse-iem']

Dataset 1:

  Type       : MapDataset
  Name       : cta_dataset
  Instrument :
  Models     : ['cta_dataset-bkg', 'diffuse-iem']

The diffuse-iem model is correctly present on both. Now, you can proceed with the fit. For computational purposes, we skip it in this notebook

fit2 = Fit() result2 = fit2.run(datasets) print(result2.success)

Loading models from a catalog#

We now load the Fermi 3FHL catalog and demonstrate some convenience functions. For more details on using Gammapy catalog, see the Source catalogs tutorial.

We first choose some relevant models from the catalog and create a new Models object.

gc_sep = catalog.positions.separation(SkyCoord(0, 0, unit="deg", frame="galactic"))
models_3fhl = [_.sky_model() for k, _ in enumerate(catalog) if gc_sep[k].value < 8]
models_3fhl = Models(models_3fhl)

print(len(models_3fhl))
20

Selecting models contributing to a given region#

We now use select_region to get a subset of models contributing to a particular region. You can also use select_mask to get models lying inside the True region of a mask map`

region = CircleSkyRegion(
    center=SkyCoord(0, 0, unit="deg", frame="galactic"), radius=3.0 * u.deg
)

models_selected = models_3fhl.select_region(region)
print(len(models_selected))
8

We now want to assign models_3fhl to the Fermi dataset, and models_selected to both the CTA and Fermi datasets. For this, we explicitly mention the datasets_names to the former, and leave it None (default) for the latter.

To see the models on a particular dataset, you can simply see

print("Fermi dataset models: ", datasets[0].models.names)
print("\n CTA dataset models: ", datasets[1].models.names)
Fermi dataset models:  ['3FHL J1731.7-3003', '3FHL J1732.6-3131', '3FHL J1741.8-2536', '3FHL J1744.5-2609', '3FHL J1745.6-2900', '3FHL J1745.8-3028e', '3FHL J1746.2-2852', '3FHL J1747.2-2959', '3FHL J1747.2-2822', '3FHL J1748.0-2446', '3FHL J1748.1-2903', '3FHL J1748.6-2816', '3FHL J1753.8-2537', '3FHL J1800.5-2343e', '3FHL J1800.7-2357', '3FHL J1801.5-2450', '3FHL J1801.6-2327', '3FHL J1802.3-3043', '3FHL J1809.8-2332', '3FHL J1811.2-2800']

 CTA dataset models:  ['3FHL J1744.5-2609', '3FHL J1745.6-2900', '3FHL J1745.8-3028e', '3FHL J1746.2-2852', '3FHL J1747.2-2959', '3FHL J1747.2-2822', '3FHL J1748.1-2903', '3FHL J1748.6-2816']

Combining two Models#

Models can be extended simply as python lists

11

Selecting models from a list#

A Model can be selected from a list of Models by specifying its index or its name.

model = models_3fhl[0]
print(model)

# Alternatively
model = models_3fhl["3FHL J1731.7-3003"]
print(model)
SkyModel

  Name                      : 3FHL J1731.7-3003
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      2.742   +/-    0.50
    amplitude                     :   2.59e-12   +/- 7.6e-13 1 / (cm2 GeV s)
    reference             (frozen):     17.603       GeV
    lon_0                         :    262.949   +/-    0.02 deg
    lat_0                         :    -30.051   +/-    0.02 deg


SkyModel

  Name                      : 3FHL J1731.7-3003
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      2.742   +/-    0.50
    amplitude                     :   2.59e-12   +/- 7.6e-13 1 / (cm2 GeV s)
    reference             (frozen):     17.603       GeV
    lon_0                         :    262.949   +/-    0.02 deg
    lat_0                         :    -30.051   +/-    0.02 deg

select can be used to select all models satisfying a list of conditions. To select all models applied on the cta_dataset with the characters 1748 in the name

models = models_3fhl.select(datasets_names=cta_dataset.name, name_substring="1748")
print(models)
Models

Component 0: SkyModel

  Name                      : 3FHL J1748.1-2903
  Datasets names            : None
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      4.687   +/-    1.02
    amplitude                     :   1.24e-11   +/- 3.3e-12 1 / (cm2 GeV s)
    reference             (frozen):     12.596       GeV
    lon_0                         :    267.037   +/-    0.02 deg
    lat_0                         :    -29.062   +/-    0.02 deg

Component 1: SkyModel

  Name                      : 3FHL J1748.6-2816
  Datasets names            : None
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      4.345   +/-    0.66
    amplitude                     :   1.76e-11   +/- 3.6e-12 1 / (cm2 GeV s)
    reference             (frozen):     13.199       GeV
    lon_0                         :    267.160   +/-    0.02 deg
    lat_0                         :    -28.278   +/-    0.01 deg

Note that select combines the different conditions with an AND operator. If one needs to combine conditions with a OR operator, the selection_mask method can generate a boolean array that can be used for selection. For example:

Models

Component 0: SkyModel

  Name                      : 3FHL J1731.7-3003
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      2.742   +/-    0.50
    amplitude                     :   2.59e-12   +/- 7.6e-13 1 / (cm2 GeV s)
    reference             (frozen):     17.603       GeV
    lon_0                         :    262.949   +/-    0.02 deg
    lat_0                         :    -30.051   +/-    0.02 deg

Component 1: SkyModel

  Name                      : 3FHL J1748.0-2446
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      3.480   +/-    0.58
    amplitude                     :   7.17e-12   +/- 1.6e-12 1 / (cm2 GeV s)
    reference             (frozen):     14.796       GeV
    lon_0                         :    267.012   +/-    0.02 deg
    lat_0                         :    -24.775   +/-    0.01 deg

Component 2: SkyModel

  Name                      : 3FHL J1748.1-2903
  Datasets names            : None
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      4.687   +/-    1.02
    amplitude                     :   1.24e-11   +/- 3.3e-12 1 / (cm2 GeV s)
    reference             (frozen):     12.596       GeV
    lon_0                         :    267.037   +/-    0.02 deg
    lat_0                         :    -29.062   +/-    0.02 deg

Component 3: SkyModel

  Name                      : 3FHL J1748.6-2816
  Datasets names            : None
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      4.345   +/-    0.66
    amplitude                     :   1.76e-11   +/- 3.6e-12 1 / (cm2 GeV s)
    reference             (frozen):     13.199       GeV
    lon_0                         :    267.160   +/-    0.02 deg
    lat_0                         :    -28.278   +/-    0.01 deg

Removing a model from a dataset#

Any addition or removal of a model must happen through the global models object, which must then be re-applied on the dataset/s. Note that operations cannot be directly performed on dataset.models().

# cta_dataset.models.remove()
# * this is forbidden *

# Remove the model '3FHL J1744.5-2609'
models_3fhl.remove("3FHL J1744.5-2609")
len(models_3fhl)

# After any operation on models, it must be re-applied on the datasets
datasets.models = models_3fhl

To see the models applied on a dataset, you can simply

['3FHL J1731.7-3003', '3FHL J1732.6-3131', '3FHL J1741.8-2536', '3FHL J1745.6-2900', '3FHL J1745.8-3028e', '3FHL J1746.2-2852', '3FHL J1747.2-2959', '3FHL J1747.2-2822', '3FHL J1748.0-2446', '3FHL J1748.1-2903', '3FHL J1748.6-2816', '3FHL J1753.8-2537', '3FHL J1800.5-2343e', '3FHL J1800.7-2357', '3FHL J1801.5-2450', '3FHL J1801.6-2327', '3FHL J1802.3-3043', '3FHL J1809.8-2332', '3FHL J1811.2-2800']

Plotting models on a (counts) map#

The spatial regions of Models can be plotted on a given geom using plot_regions. You can also use plot_positions to plot the centers of each model.

plt.figure(figsize=(16, 5))
ax1 = plt.subplot(121, projection=fermi_dataset.counts.geom.wcs)
ax2 = plt.subplot(122, projection=cta_dataset.counts.geom.wcs)

for ax, dataset in zip([ax1, ax2], datasets):
    dataset.counts.sum_over_axes().smooth(0.05 * u.deg).plot(
        ax=ax, stretch="sqrt", add_cbar=True, cmap="afmhot"
    )
    dataset.models.plot_regions(ax=ax, color="white")
    ax.set_title(dataset.name)

plt.show()
fermi_dataset, cta_dataset

Freezing and unfreezing model parameters#

For a given model, any parameter can be (un)frozen individually. Additionally, model.freeze and model.unfreeze can be used to freeze and unfreeze all parameters in one go.

model = models_3fhl[0]
print(model)

# To freeze a single parameter
model.spectral_model.index.frozen = True
print(model)  # index is now frozen

# To unfreeze a parameter
model.spectral_model.index.frozen = False

# To freeze all parameters of a model
model.freeze()
print(model)

# To unfreeze all parameters (except parameters which must remain frozen)
model.unfreeze()
print(model)
SkyModel

  Name                      : 3FHL J1731.7-3003
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      2.742   +/-    0.50
    amplitude                     :   2.59e-12   +/- 7.6e-13 1 / (cm2 GeV s)
    reference             (frozen):     17.603       GeV
    lon_0                         :    262.949   +/-    0.02 deg
    lat_0                         :    -30.051   +/-    0.02 deg


SkyModel

  Name                      : 3FHL J1731.7-3003
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                 (frozen):      2.742
    amplitude                     :   2.59e-12   +/- 7.6e-13 1 / (cm2 GeV s)
    reference             (frozen):     17.603       GeV
    lon_0                         :    262.949   +/-    0.02 deg
    lat_0                         :    -30.051   +/-    0.02 deg


SkyModel

  Name                      : 3FHL J1731.7-3003
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                 (frozen):      2.742
    amplitude             (frozen):   2.59e-12       1 / (cm2 GeV s)
    reference             (frozen):     17.603       GeV
    lon_0                 (frozen):    262.949       deg
    lat_0                 (frozen):    -30.051       deg


SkyModel

  Name                      : 3FHL J1731.7-3003
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      2.742   +/-    0.50
    amplitude                     :   2.59e-12   +/- 7.6e-13 1 / (cm2 GeV s)
    reference             (frozen):     17.603       GeV
    lon_0                         :    262.949   +/-    0.02 deg
    lat_0                         :    -30.051   +/-    0.02 deg

Only spectral or spatial or temporal components of a model can also be frozen

# To freeze spatial components
model.freeze("spatial")
print(model)
SkyModel

  Name                      : 3FHL J1731.7-3003
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      2.742   +/-    0.50
    amplitude                     :   2.59e-12   +/- 7.6e-13 1 / (cm2 GeV s)
    reference             (frozen):     17.603       GeV
    lon_0                 (frozen):    262.949       deg
    lat_0                 (frozen):    -30.051       deg

To check if all the parameters of a model are frozen,

print(model.frozen)  # False because spectral components are not frozen

print(model.spatial_model.frozen)  # all spatial components are frozen
False
True

The same operations can be performed on Models directly - to perform on a list of models at once, e.g.

models_selected.freeze()  # freeze all parameters of all models

models_selected.unfreeze()  # unfreeze all parameters of all models

# print the free parameters in the models
print(models_selected.parameters.free_parameters.names)
['index', 'amplitude', 'lon_0', 'lat_0', 'index', 'amplitude', 'lon_0', 'lat_0', 'index', 'amplitude', 'lon_0', 'lat_0', 'r_0', 'index', 'amplitude', 'lon_0', 'lat_0', 'index', 'amplitude', 'lon_0', 'lat_0', 'index', 'amplitude', 'lon_0', 'lat_0', 'index', 'amplitude', 'lon_0', 'lat_0', 'index', 'amplitude', 'lon_0', 'lat_0']

There are more functionalities which you can explore. In general, using help() on any function is a quick and useful way to access the documentation. For ex, Models.unfreeze_all will unfreeze all parameters, even those which are fixed by default. To see its usage, you can simply type

Help on method unfreeze in module gammapy.modeling.models.core:

unfreeze(model_type=None) method of gammapy.modeling.models.core.Models instance
    Restore parameters frozen status to default depending on model type.

    Parameters
    ----------
    model_type : {None, "spatial", "spectral"}
       Restore frozen status to default for all parameters or only spatial or only spectral.
       Default is None.

Serialising models#

Models can be (independently of Datasets) written to/ read from a disk as yaml files. Datasets are always serialised along with their associated models, ie, with yaml and fits files. eg:

# To save only the models
models_3fhl.write("3fhl_models.yaml", overwrite=True)

# To save datasets and models
datasets.write(
    filename="datasets-gc.yaml", filename_models="models_gc.yaml", overwrite=True
)

# To read only models
models = Models.read("3fhl_models.yaml")
print(models)

# To read datasets with models
datasets_read = Datasets.read("datasets-gc.yaml", filename_models="models_gc.yaml")
print(datasets_read)
Models

Component 0: SkyModel

  Name                      : 3FHL J1731.7-3003
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      2.742   +/-    0.50
    amplitude                     :   2.59e-12   +/- 7.6e-13 1 / (cm2 GeV s)
    reference             (frozen):     17.603       GeV
    lon_0                 (frozen):    262.949       deg
    lat_0                 (frozen):    -30.051       deg

Component 1: SkyModel

  Name                      : 3FHL J1732.6-3131
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      5.151   +/-    0.84
    amplitude                     :   2.78e-11   +/- 4.5e-12 1 / (cm2 GeV s)
    reference             (frozen):     12.216       GeV
    lon_0                         :    263.156   +/-    0.01 deg
    lat_0                         :    -31.518   +/-    0.01 deg

Component 2: SkyModel

  Name                      : 3FHL J1741.8-2536
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      2.196   +/-    0.30
    amplitude                     :   1.25e-12   +/- 3.2e-13 1 / (cm2 GeV s)
    reference             (frozen):     25.438       GeV
    lon_0                         :    265.457   +/-    0.02 deg
    lat_0                         :    -25.610   +/-    0.02 deg

Component 3: SkyModel

  Name                      : 3FHL J1745.6-2900
  Datasets names            : None
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      2.727   +/-    0.10
    amplitude                     :   4.54e-11   +/- 2.7e-12 1 / (cm2 GeV s)
    reference             (frozen):     18.370       GeV
    lon_0                         :    266.419   +/-    0.01 deg
    lat_0                         :    -29.011   +/-    0.00 deg

Component 4: SkyModel

  Name                      : 3FHL J1745.8-3028e
  Datasets names            : None
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : DiskSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      1.988   +/-    0.11
    amplitude                     :   6.30e-12   +/- 7.0e-13 1 / (cm2 GeV s)
    reference             (frozen):     34.165       GeV
    lon_0                         :    266.453   +/-    0.00 deg
    lat_0                         :    -30.475   +/-    0.00 deg
    r_0                           :      0.528   +/-    0.00 deg
    e                     (frozen):      0.000
    phi                   (frozen):      0.000       deg
    edge_width            (frozen):      0.010

Component 5: SkyModel

  Name                      : 3FHL J1746.2-2852
  Datasets names            : None
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      3.253   +/-    0.31
    amplitude                     :   2.43e-11   +/- 3.2e-12 1 / (cm2 GeV s)
    reference             (frozen):     15.207       GeV
    lon_0                         :    266.564   +/-    0.01 deg
    lat_0                         :    -28.878   +/-    0.01 deg

Component 6: SkyModel

  Name                      : 3FHL J1747.2-2959
  Datasets names            : None
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      3.704   +/-    0.71
    amplitude                     :   6.59e-12   +/- 1.8e-12 1 / (cm2 GeV s)
    reference             (frozen):     14.624       GeV
    lon_0                         :    266.802   +/-    0.02 deg
    lat_0                         :    -29.995   +/-    0.02 deg

Component 7: SkyModel

  Name                      : 3FHL J1747.2-2822
  Datasets names            : None
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      2.680   +/-    0.38
    amplitude                     :   4.91e-12   +/- 1.2e-12 1 / (cm2 GeV s)
    reference             (frozen):     18.330       GeV
    lon_0                         :    266.824   +/-    0.02 deg
    lat_0                         :    -28.367   +/-    0.01 deg

Component 8: SkyModel

  Name                      : 3FHL J1748.0-2446
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      3.480   +/-    0.58
    amplitude                     :   7.17e-12   +/- 1.6e-12 1 / (cm2 GeV s)
    reference             (frozen):     14.796       GeV
    lon_0                         :    267.012   +/-    0.02 deg
    lat_0                         :    -24.775   +/-    0.01 deg

Component 9: SkyModel

  Name                      : 3FHL J1748.1-2903
  Datasets names            : None
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      4.687   +/-    1.02
    amplitude                     :   1.24e-11   +/- 3.3e-12 1 / (cm2 GeV s)
    reference             (frozen):     12.596       GeV
    lon_0                         :    267.037   +/-    0.02 deg
    lat_0                         :    -29.062   +/-    0.02 deg

Component 10: SkyModel

  Name                      : 3FHL J1748.6-2816
  Datasets names            : None
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      4.345   +/-    0.66
    amplitude                     :   1.76e-11   +/- 3.6e-12 1 / (cm2 GeV s)
    reference             (frozen):     13.199       GeV
    lon_0                         :    267.160   +/-    0.02 deg
    lat_0                         :    -28.278   +/-    0.01 deg

Component 11: SkyModel

  Name                      : 3FHL J1753.8-2537
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      3.658   +/-    0.48
    amplitude                     :   1.50e-11   +/- 2.4e-12 1 / (cm2 GeV s)
    reference             (frozen):     14.320       GeV
    lon_0                         :    268.450   +/-    0.01 deg
    lat_0                         :    -25.630   +/-    0.01 deg

Component 12: SkyModel

  Name                      : 3FHL J1800.5-2343e
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : DiskSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      2.346   +/-    0.07
    amplitude                     :   4.34e-11   +/- 2.4e-12 1 / (cm2 GeV s)
    reference             (frozen):     23.149       GeV
    lon_0                         :    270.144   +/-    0.00 deg
    lat_0                         :    -23.719   +/-    0.00 deg
    r_0                           :      0.638   +/-    0.00 deg
    e                     (frozen):      0.000
    phi                   (frozen):      0.000       deg
    edge_width            (frozen):      0.010

Component 13: SkyModel

  Name                      : 3FHL J1800.7-2357
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      3.576   +/-    0.61
    amplitude                     :   1.08e-11   +/- 2.8e-12 1 / (cm2 GeV s)
    reference             (frozen):     14.223       GeV
    lon_0                         :    270.184   +/-    0.02 deg
    lat_0                         :    -23.953   +/-    0.02 deg

Component 14: SkyModel

  Name                      : 3FHL J1801.5-2450
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      4.524   +/-    1.03
    amplitude                     :   9.48e-12   +/- 2.7e-12 1 / (cm2 GeV s)
    reference             (frozen):     12.892       GeV
    lon_0                         :    270.381   +/-    0.03 deg
    lat_0                         :    -24.837   +/-    0.02 deg

Component 15: SkyModel

  Name                      : 3FHL J1801.6-2327
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      5.050   +/-    1.23
    amplitude                     :   2.42e-11   +/- 5.8e-12 1 / (cm2 GeV s)
    reference             (frozen):     12.124       GeV
    lon_0                         :    270.403   +/-    0.02 deg
    lat_0                         :    -23.465   +/-    0.02 deg

Component 16: SkyModel

  Name                      : 3FHL J1802.3-3043
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      6.222   +/-    1.29
    amplitude                     :   1.48e-11   +/- 3.5e-12 1 / (cm2 GeV s)
    reference             (frozen):     11.876       GeV
    lon_0                         :    270.599   +/-    0.02 deg
    lat_0                         :    -30.722   +/-    0.02 deg

Component 17: SkyModel

  Name                      : 3FHL J1809.8-2332
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      4.220   +/-    0.26
    amplitude                     :   6.26e-11   +/- 4.8e-12 1 / (cm2 GeV s)
    reference             (frozen):     13.446       GeV
    lon_0                         :    272.459   +/-    0.01 deg
    lat_0                         :    -23.539   +/-    0.01 deg

Component 18: SkyModel

  Name                      : 3FHL J1811.2-2800
  Datasets names            : fermi_dataset
  Spectral model type       : PowerLawSpectralModel
  Spatial  model type       : PointSpatialModel
  Temporal model type       :
  Parameters:
    index                         :      2.557   +/-    0.49
    amplitude                     :   1.30e-12   +/- 4.2e-13 1 / (cm2 GeV s)
    reference             (frozen):     19.437       GeV
    lon_0                         :    272.804   +/-    0.02 deg
    lat_0                         :    -28.003   +/-    0.02 deg


Datasets
--------

Dataset 0:

  Type       : MapDataset
  Name       : fermi_dataset
  Instrument :
  Models     : ['3FHL J1731.7-3003', '3FHL J1732.6-3131', '3FHL J1741.8-2536', '3FHL J1745.6-2900', '3FHL J1745.8-3028e', '3FHL J1746.2-2852', '3FHL J1747.2-2959', '3FHL J1747.2-2822', '3FHL J1748.0-2446', '3FHL J1748.1-2903', '3FHL J1748.6-2816', '3FHL J1753.8-2537', '3FHL J1800.5-2343e', '3FHL J1800.7-2357', '3FHL J1801.5-2450', '3FHL J1801.6-2327', '3FHL J1802.3-3043', '3FHL J1809.8-2332', '3FHL J1811.2-2800']

Dataset 1:

  Type       : MapDataset
  Name       : cta_dataset
  Instrument :
  Models     : ['3FHL J1745.6-2900', '3FHL J1745.8-3028e', '3FHL J1746.2-2852', '3FHL J1747.2-2959', '3FHL J1747.2-2822', '3FHL J1748.1-2903', '3FHL J1748.6-2816']

Total running time of the script: (0 minutes 10.817 seconds)

Gallery generated by Sphinx-Gallery