# Licensed under a 3-clause BSD style license - see LICENSE.rst
import logging
import numpy as np
from scipy.stats import median_abs_deviation as mad
import astropy.units as u
from astropy.io import fits
from astropy.table import Table
from regions import CircleSkyRegion
import matplotlib.pyplot as plt
from gammapy.data import GTI, PointingMode
from gammapy.irf import EDispKernelMap, EDispMap, PSFKernel, PSFMap, RecoPSFMap
from gammapy.maps import LabelMapAxis, Map, MapAxes, MapAxis, WcsGeom
from gammapy.modeling.models import DatasetModels, FoVBackgroundModel, Models
from gammapy.stats import (
CashCountsStatistic,
WStatCountsStatistic,
cash,
cash_sum_cython,
get_wstat_mu_bkg,
wstat,
)
from gammapy.utils.fits import HDULocation, LazyFitsData
from gammapy.utils.random import get_random_state
from gammapy.utils.scripts import make_name, make_path
from gammapy.utils.table import hstack_columns
from .core import Dataset
from .evaluator import MapEvaluator
from .metadata import MapDatasetMetaData
from .utils import get_axes
__all__ = [
"MapDataset",
"MapDatasetOnOff",
"create_empty_map_dataset_from_irfs",
"create_map_dataset_geoms",
"create_map_dataset_from_observation",
]
log = logging.getLogger(__name__)
RAD_MAX = 0.66
RAD_AXIS_DEFAULT = MapAxis.from_bounds(
0, RAD_MAX, nbin=66, node_type="edges", name="rad", unit="deg"
)
MIGRA_AXIS_DEFAULT = MapAxis.from_bounds(
0.2, 5, nbin=48, node_type="edges", name="migra"
)
BINSZ_IRF_DEFAULT = 0.2 * u.deg
EVALUATION_MODE = "local"
USE_NPRED_CACHE = True
[docs]
def create_map_dataset_geoms(
geom,
energy_axis_true=None,
migra_axis=None,
rad_axis=None,
binsz_irf=BINSZ_IRF_DEFAULT,
reco_psf=False,
):
"""Create map geometries for a `MapDataset`.
Parameters
----------
geom : `~gammapy.maps.WcsGeom`
Reference target geometry with a reconstructed energy axis. It is used for counts and background maps.
Additional external data axes can be added to support e.g. event types.
energy_axis_true : `~gammapy.maps.MapAxis`
True energy axis used for IRF maps.
migra_axis : `~gammapy.maps.MapAxis`
If set, this provides the migration axis for the energy dispersion map.
If not set, an EDispKernelMap is produced instead. Default is None.
rad_axis : `~gammapy.maps.MapAxis`
Rad axis for the PSF map.
binsz_irf : float
IRF Map pixel size in degrees.
reco_psf : bool
Use reconstructed energy for the PSF geometry. Default is False.
Returns
-------
geoms : dict
Dictionary with map geometries.
"""
rad_axis = rad_axis or RAD_AXIS_DEFAULT
if energy_axis_true is not None:
energy_axis_true.assert_name("energy_true")
else:
energy_axis_true = geom.axes["energy"].copy(name="energy_true")
external_axes = geom.axes.drop("energy")
geom_image = geom.to_image()
geom_exposure = geom_image.to_cube(MapAxes([energy_axis_true]) + external_axes)
geom_irf = geom_image.to_binsz(binsz=binsz_irf)
if reco_psf:
geom_psf = geom_irf.to_cube(
MapAxes([rad_axis, geom.axes["energy"]]) + external_axes
)
else:
geom_psf = geom_irf.to_cube(
MapAxes([rad_axis, energy_axis_true]) + external_axes
)
if migra_axis:
geom_edisp = geom_irf.to_cube(
MapAxes([migra_axis, energy_axis_true]) + external_axes
)
else:
geom_edisp = geom_irf.to_cube(
MapAxes([geom.axes["energy"], energy_axis_true]) + external_axes
)
return {
"geom": geom,
"geom_exposure": geom_exposure,
"geom_psf": geom_psf,
"geom_edisp": geom_edisp,
}
def _default_energy_axis(observation, energy_bin_per_decade_max=30, position=None):
# number of bins per decade estimated from the energy resolution
# such as diff(ereco.edges)/ereco.center ~ min(eres)
if isinstance(observation.psf, PSFMap):
etrue = observation.psf.psf_map.geom.axes[observation.psf.energy_name]
if isinstance(observation.edisp, EDispKernelMap):
ekern = observation.edisp.get_edisp_kernel(
energy_axis=None, position=position
)
if isinstance(observation.edisp, EDispMap):
ekern = observation.edisp.get_edisp_kernel(
energy_axis=etrue.rename("energy"), position=position
)
eres = ekern.get_resolution(etrue.center)
elif hasattr(observation.psf, "axes"):
etrue = observation.psf.axes[0] # only where psf is defined
if position:
offset = observation.pointing.fixed_icrs.separation(position)
else:
offset = 0 * u.deg
ekern = observation.edisp.to_edisp_kernel(offset)
eres = ekern.get_resolution(etrue.center)
eres = eres[np.isfinite(eres) & (eres > 0.0)]
if eres.size > 0:
# remove outliers
beyond_mad = np.median(eres) - mad(eres) * eres.unit
eres[eres < beyond_mad] = np.nan
nbin_per_decade = np.nan_to_num(
int(np.rint(2.0 / np.nanmin(eres.value))), nan=np.inf
)
nbin_per_decade = np.minimum(nbin_per_decade, energy_bin_per_decade_max)
else:
nbin_per_decade = energy_bin_per_decade_max
energy_axis_true = MapAxis.from_energy_bounds(
etrue.edges[0],
etrue.edges[-1],
nbin=nbin_per_decade,
per_decade=True,
name="energy_true",
)
if hasattr(observation, "bkg") and observation.bkg:
ereco = observation.bkg.axes["energy"]
energy_axis = MapAxis.from_energy_bounds(
ereco.edges[0],
ereco.edges[-1],
nbin=nbin_per_decade,
per_decade=True,
name="energy",
)
else:
energy_axis = energy_axis_true.rename("energy")
return energy_axis, energy_axis_true
def _default_binsz(observation, spatial_bin_size_min=0.01 * u.deg):
# bin size estimated from the minimal r68 of the psf
if isinstance(observation.psf, PSFMap):
energy_axis = observation.psf.psf_map.geom.axes[observation.psf.energy_name]
psf_r68 = observation.psf.containment_radius(0.68, energy_axis.edges)
elif hasattr(observation.psf, "axes"):
etrue = observation.psf.axes[0] # only where psf is defined
psf_r68 = observation.psf.containment_radius(
0.68, energy_true=etrue.edges, offset=0.0 * u.deg
)
psf_r68 = psf_r68[np.isfinite(psf_r68)]
if psf_r68.size > 0:
# remove outliers
beyond_mad = np.median(psf_r68) - mad(psf_r68) * psf_r68.unit
psf_r68[psf_r68 < beyond_mad] = np.nan
binsz = np.nan_to_num(np.nanmin(psf_r68), nan=-np.inf)
binsz = np.maximum(binsz, spatial_bin_size_min)
else:
binsz = spatial_bin_size_min
return binsz
def _default_width(observation, spatial_width_max=12 * u.deg):
# width estimated from the rad_max or the offset_max
if isinstance(observation.psf, PSFMap):
width = 2.0 * np.max(observation.psf.psf_map.geom.width)
elif hasattr(observation.psf, "axes"):
width = 2.0 * observation.psf.axes["offset"].edges[-1]
else:
width = spatial_width_max
return np.minimum(width, spatial_width_max)
[docs]
def create_empty_map_dataset_from_irfs(
observation,
dataset_name=None,
energy_axis_true=None,
energy_axis=None,
energy_bin_per_decade_max=30,
spatial_width=None,
spatial_width_max=12 * u.deg,
spatial_bin_size=None,
spatial_bin_size_min=0.01 * u.deg,
position=None,
frame="icrs",
):
"""Create a MapDataset, if energy axes, spatial width or bin size are not given
they are determined automatically from the IRFs,
but the estimated value cannot exceed the given limits.
Parameters
----------
observation : `~gammapy.data.Observation`
Observation containing the IRFs.
dataset_name : str, optional
Default is None. If None it is determined from the observation ID.
energy_axis_true : `~gammapy.maps.MapAxis`, optional
True energy axis. Default is None.
If None it is determined from the observation IRFs.
energy_axis : `~gammapy.maps.MapAxis`, optional
Reconstructed energy axis. Default is None.
If None it is determined from the observation IRFs.
energy_bin_per_decade_max : int, optional
Maximal number of bin per decade in energy for the reference dataset
spatial_width : `~astropy.units.Quantity`, optional
Spatial window size. Default is None.
If None it is determined from the observation offset max or rad max.
spatial_width_max : `~astropy.quantity.Quantity`, optional
Maximal spatial width. Default is 12 degree.
spatial_bin_size : `~astropy.units.Quantity`, optional
Pixel size. Default is None.
If None it is determined from the observation PSF R68.
spatial_bin_size_min : `~astropy.quantity.Quantity`, optional
Minimal spatial bin size. Default is 0.01 degree.
position : `~astropy.coordinates.SkyCoord`, optional
Center of the geometry. Default is the observation pointing at mid-observation time.
frame: str, optional
frame of the coordinate system. Default is "icrs".
"""
if position is None:
if hasattr(observation, "pointing"):
if observation.pointing.mode is not PointingMode.POINTING:
raise NotImplementedError(
"Only datas with fixed pointing in ICRS are supported"
)
position = observation.pointing.fixed_icrs
if spatial_width is None:
spatial_width = _default_width(observation, spatial_width_max)
if spatial_bin_size is None:
spatial_bin_size = _default_binsz(observation, spatial_bin_size_min)
if energy_axis is None or energy_axis_true is None:
energy_axis_, energy_axis_true_ = _default_energy_axis(
observation, energy_bin_per_decade_max, position
)
if energy_axis is None:
energy_axis = energy_axis_
if energy_axis_true is None:
energy_axis_true = energy_axis_true_
if dataset_name is None:
dataset_name = f"obs_{observation.obs_id}"
geom = WcsGeom.create(
skydir=position.transform_to(frame),
width=spatial_width,
binsz=spatial_bin_size.to_value(u.deg),
frame=frame,
axes=[energy_axis],
)
axes = dict(
energy_axis_true=energy_axis_true,
)
if observation.edisp is not None:
if isinstance(observation.edisp, EDispMap):
axes["migra_axis"] = observation.edisp.edisp_map.geom.axes["migra"]
elif hasattr(observation.edisp, "axes"):
axes["migra_axis"] = observation.edisp.axes["migra"]
dataset = MapDataset.create(
geom,
name=dataset_name,
**axes,
)
return dataset
[docs]
def create_map_dataset_from_observation(
observation,
models=None,
dataset_name=None,
energy_axis_true=None,
energy_axis=None,
energy_bin_per_decade_max=30,
spatial_width=None,
spatial_width_max=12 * u.deg,
spatial_bin_size=None,
spatial_bin_size_min=0.01 * u.deg,
position=None,
frame="icrs",
):
"""Create a MapDataset, if energy axes, spatial width or bin size are not given
they are determined automatically from the observation IRFs,
but the estimated value cannot exceed the given limits.
Parameters
----------
observation : `~gammapy.data.Observation`
Observation to be simulated.
models : `~gammapy.modeling.Models`, optional
Models. Default is None.
dataset_name : str, optional
If `models` contains one or multiple `FoVBackgroundModel`
it should match the `dataset_name` of the background model to use.
Default is None. If None it is determined from the observation ID.
energy_axis_true : `~gammapy.maps.MapAxis`, optional
True energy axis. Default is None.
If None it is determined from the observation IRFs.
energy_axis : `~gammapy.maps.MapAxis`, optional
Reconstructed energy axis. Default is None.
If None it is determined from the observation IRFs.
energy_bin_per_decade_max : int, optional
Maximal number of bin per decade in energy for the reference dataset
spatial_width : `~astropy.units.Quantity`, optional
Spatial window size. Default is None.
If None it is determined from the observation offset max or rad max.
spatial_width_max : `~astropy.quantity.Quantity`, optional
Maximal spatial width. Default is 12 degree.
spatial_bin_size : `~astropy.units.Quantity`, optional
Pixel size. Default is None.
If None it is determined from the observation PSF R68.
spatial_bin_size_min : `~astropy.quantity.Quantity`, optional
Minimal spatial bin size. Default is 0.01 degree.
position : `~astropy.coordinates.SkyCoord`, optional
Center of the geometry. Defalut is the observation pointing.
frame: str, optional
frame of the coordinate system. Default is "icrs".
"""
from gammapy.makers import MapDatasetMaker
dataset = create_empty_map_dataset_from_irfs(
observation,
dataset_name=dataset_name,
energy_axis_true=energy_axis_true,
energy_axis=energy_axis,
energy_bin_per_decade_max=energy_bin_per_decade_max,
spatial_width=spatial_width,
spatial_width_max=spatial_width_max,
spatial_bin_size=spatial_bin_size,
spatial_bin_size_min=spatial_bin_size_min,
position=position,
frame=frame,
)
if models is None:
models = Models()
if not np.any(
[
isinstance(m, FoVBackgroundModel) and m.datasets_names[0] == dataset.name
for m in models
]
):
models.append(FoVBackgroundModel(dataset_name=dataset.name))
components = ["exposure"]
if observation.edisp is not None:
components.append("edisp")
if observation.bkg is not None:
components.append("background")
if observation.psf is not None:
components.append("psf")
maker = MapDatasetMaker(selection=components)
dataset = maker.run(dataset, observation)
dataset.models = models
return dataset
[docs]
class MapDataset(Dataset):
"""Main map dataset for likelihood fitting.
It bundles together binned counts, background, IRFs in the form of `~gammapy.maps.Map`.
A safe mask and a fit mask can be added to exclude bins during the analysis.
If models are assigned to it, it can compute predicted counts in each bin of the counts `Map` and compute
the associated statistic function, here the Cash statistic (see `~gammapy.stats.cash`).
For more information see :ref:`datasets`.
Parameters
----------
models : `~gammapy.modeling.models.Models`
Source sky models.
counts : `~gammapy.maps.WcsNDMap` or `~gammapy.utils.fits.HDULocation`
Counts cube.
exposure : `~gammapy.maps.WcsNDMap` or `~gammapy.utils.fits.HDULocation`
Exposure cube.
background : `~gammapy.maps.WcsNDMap` or `~gammapy.utils.fits.HDULocation`
Background cube.
mask_fit : `~gammapy.maps.WcsNDMap` or `~gammapy.utils.fits.HDULocation`
Mask to apply to the likelihood for fitting.
psf : `~gammapy.irf.PSFMap` or `~gammapy.utils.fits.HDULocation`
PSF kernel.
edisp : `~gammapy.irf.EDispMap` or `~gammapy.utils.fits.HDULocation`
Energy dispersion kernel
mask_safe : `~gammapy.maps.WcsNDMap` or `~gammapy.utils.fits.HDULocation`
Mask defining the safe data range.
gti : `~gammapy.data.GTI`
GTI of the observation or union of GTI if it is a stacked observation.
meta_table : `~astropy.table.Table`
Table listing information on observations used to create the dataset.
One line per observation for stacked datasets.
meta : `~gammapy.datasets.MapDatasetMetaData`
Associated meta data container
Notes
-----
If an `HDULocation` is passed the map is loaded lazily. This means the
map data is only loaded in memory as the corresponding data attribute
on the MapDataset is accessed. If it was accessed once it is cached for
the next time.
Examples
--------
>>> from gammapy.datasets import MapDataset
>>> filename = "$GAMMAPY_DATA/cta-1dc-gc/cta-1dc-gc.fits.gz"
>>> dataset = MapDataset.read(filename, name="cta-dataset")
>>> print(dataset)
MapDataset
----------
<BLANKLINE>
Name : cta-dataset
<BLANKLINE>
Total counts : 104317
Total background counts : 91507.70
Total excess counts : 12809.30
<BLANKLINE>
Predicted counts : 91507.69
Predicted background counts : 91507.70
Predicted excess counts : nan
<BLANKLINE>
Exposure min : 6.28e+07 m2 s
Exposure max : 1.90e+10 m2 s
<BLANKLINE>
Number of total bins : 768000
Number of fit bins : 691680
<BLANKLINE>
Fit statistic type : cash
Fit statistic value (-2 log(L)) : nan
<BLANKLINE>
Number of models : 0
Number of parameters : 0
Number of free parameters : 0
See Also
--------
MapDatasetOnOff, SpectrumDataset, FluxPointsDataset.
"""
stat_type = "cash"
tag = "MapDataset"
counts = LazyFitsData(cache=True)
exposure = LazyFitsData(cache=True)
edisp = LazyFitsData(cache=True)
background = LazyFitsData(cache=True)
psf = LazyFitsData(cache=True)
mask_fit = LazyFitsData(cache=True)
mask_safe = LazyFitsData(cache=True)
_lazy_data_members = [
"counts",
"exposure",
"edisp",
"psf",
"mask_fit",
"mask_safe",
"background",
]
# TODO: shoule be part of the LazyFitsData no ?
gti = None
meta_table = None
def __init__(
self,
models=None,
counts=None,
exposure=None,
background=None,
psf=None,
edisp=None,
mask_safe=None,
mask_fit=None,
gti=None,
meta_table=None,
name=None,
meta=None,
):
self._name = make_name(name)
self._evaluators = {}
self.counts = counts
self.exposure = exposure
self.background = background
self._background_cached = None
self._background_parameters_cached = None
self.mask_fit = mask_fit
if psf and not isinstance(psf, (PSFMap, HDULocation)):
raise ValueError(
f"'psf' must be a 'PSFMap' or `HDULocation` object, got {type(psf)}"
)
self.psf = psf
if edisp and not isinstance(edisp, (EDispMap, EDispKernelMap, HDULocation)):
raise ValueError(
"'edisp' must be a 'EDispMap', `EDispKernelMap` or 'HDULocation' "
f"object, got `{type(edisp)}` instead."
)
self.edisp = edisp
self.mask_safe = mask_safe
self.gti = gti
self.models = models
self.meta_table = meta_table
if meta is None:
self._meta = MapDatasetMetaData()
else:
self._meta = meta
@property
def _psf_kernel(self):
"""Precompute PSFkernel if there is only one spatial bin in the PSFmap"""
if self.psf and self.psf.has_single_spatial_bin:
if self.psf.energy_name == "energy_true":
map_ref = self.exposure
else:
map_ref = self.counts
if map_ref and not map_ref.geom.is_region:
return self.psf.get_psf_kernel(map_ref.geom)
@property
def meta(self):
return self._meta
@meta.setter
def meta(self, value):
self._meta = value
# TODO: keep or remove?
@property
def background_model(self):
try:
return self.models[f"{self.name}-bkg"]
except (ValueError, TypeError):
pass
def __str__(self):
str_ = f"{self.__class__.__name__}\n"
str_ += "-" * len(self.__class__.__name__) + "\n"
str_ += "\n"
str_ += "\t{:32}: {{name}} \n\n".format("Name")
str_ += "\t{:32}: {{counts:.0f}} \n".format("Total counts")
str_ += "\t{:32}: {{background:.2f}}\n".format("Total background counts")
str_ += "\t{:32}: {{excess:.2f}}\n\n".format("Total excess counts")
str_ += "\t{:32}: {{npred:.2f}}\n".format("Predicted counts")
str_ += "\t{:32}: {{npred_background:.2f}}\n".format(
"Predicted background counts"
)
str_ += "\t{:32}: {{npred_signal:.2f}}\n\n".format("Predicted excess counts")
str_ += "\t{:32}: {{exposure_min:.2e}}\n".format("Exposure min")
str_ += "\t{:32}: {{exposure_max:.2e}}\n\n".format("Exposure max")
str_ += "\t{:32}: {{n_bins}} \n".format("Number of total bins")
str_ += "\t{:32}: {{n_fit_bins}} \n\n".format("Number of fit bins")
# likelihood section
str_ += "\t{:32}: {{stat_type}}\n".format("Fit statistic type")
str_ += "\t{:32}: {{stat_sum:.2f}}\n\n".format(
"Fit statistic value (-2 log(L))"
)
info = self.info_dict()
str_ = str_.format(**info)
# model section
n_models, n_pars, n_free_pars = 0, 0, 0
if self.models is not None:
n_models = len(self.models)
n_pars = len(self.models.parameters)
n_free_pars = len(self.models.parameters.free_parameters)
str_ += "\t{:32}: {} \n".format("Number of models", n_models)
str_ += "\t{:32}: {}\n".format("Number of parameters", n_pars)
str_ += "\t{:32}: {}\n\n".format("Number of free parameters", n_free_pars)
if self.models is not None:
str_ += "\t" + "\n\t".join(str(self.models).split("\n")[2:])
return str_.expandtabs(tabsize=2)
@property
def geoms(self):
"""Map geometries.
Returns
-------
geoms : dict
Dictionary of map geometries involved in the dataset.
"""
geoms = {}
geoms["geom"] = self._geom
if self.exposure:
geoms["geom_exposure"] = self.exposure.geom
if self.psf:
geoms["geom_psf"] = self.psf.psf_map.geom
if self.edisp:
geoms["geom_edisp"] = self.edisp.edisp_map.geom
return geoms
@property
def models(self):
"""Models set on the dataset (`~gammapy.modeling.models.Models`)."""
return self._models
@property
def excess(self):
"""Observed excess: counts-background."""
return self.counts - self.background
@models.setter
def models(self, models):
"""Models setter."""
self._evaluators = {}
if models is not None:
models = DatasetModels(models)
models = models.select(datasets_names=self.name)
if models:
psf = self._psf_kernel
for model in models:
if not isinstance(model, FoVBackgroundModel):
evaluator = MapEvaluator(
model=model,
psf=psf,
evaluation_mode=EVALUATION_MODE,
gti=self.gti,
use_cache=USE_NPRED_CACHE,
)
self._evaluators[model.name] = evaluator
self._models = models
@property
def evaluators(self):
"""Model evaluators."""
return self._evaluators
@property
def _geom(self):
"""Main analysis geometry."""
if self.counts is not None:
return self.counts.geom
elif self.background is not None:
return self.background.geom
elif self.mask_safe is not None:
return self.mask_safe.geom
elif self.mask_fit is not None:
return self.mask_fit.geom
else:
raise ValueError(
"Either 'counts', 'background', 'mask_fit'"
" or 'mask_safe' must be defined."
)
@property
def data_shape(self):
"""Shape of the counts or background data (tuple)."""
return self._geom.data_shape
def _energy_range(self, mask_map=None):
"""Compute the energy range maps with or without the fit mask."""
geom = self._geom
energy = geom.axes["energy"].edges
e_i = geom.axes.index_data("energy")
geom = geom.drop("energy")
if mask_map is not None:
mask = mask_map.data
if mask.any():
idx = mask.argmax(e_i)
energy_min = energy.value[idx]
mask_nan = ~mask.any(e_i)
energy_min[mask_nan] = np.nan
mask = np.flip(mask, e_i)
idx = mask.argmax(e_i)
energy_max = energy.value[::-1][idx]
energy_max[mask_nan] = np.nan
else:
energy_min = np.full(geom.data_shape, np.nan)
energy_max = energy_min.copy()
else:
data_shape = geom.data_shape
energy_min = np.full(data_shape, energy.value[0])
energy_max = np.full(data_shape, energy.value[-1])
map_min = Map.from_geom(geom, data=energy_min, unit=energy.unit)
map_max = Map.from_geom(geom, data=energy_max, unit=energy.unit)
return map_min, map_max
@property
def energy_range(self):
"""Energy range maps defined by the mask_safe and mask_fit."""
return self._energy_range(self.mask)
@property
def energy_range_safe(self):
"""Energy range maps defined by the mask_safe only."""
return self._energy_range(self.mask_safe)
@property
def energy_range_fit(self):
"""Energy range maps defined by the mask_fit only."""
return self._energy_range(self.mask_fit)
@property
def energy_range_total(self):
"""Largest energy range among all pixels, defined by mask_safe and mask_fit."""
energy_min_map, energy_max_map = self.energy_range
return np.nanmin(energy_min_map.quantity), np.nanmax(energy_max_map.quantity)
[docs]
def npred(self):
"""Total predicted source and background counts.
Returns
-------
npred : `Map`
Total predicted counts.
"""
npred_total = self.npred_signal()
if self.background:
npred_total += self.npred_background()
npred_total.data[npred_total.data < 0.0] = 0
return npred_total
[docs]
def npred_background(self):
"""Predicted background counts.
The predicted background counts depend on the parameters
of the `FoVBackgroundModel` defined in the dataset.
Returns
-------
npred_background : `Map`
Predicted counts from the background.
"""
background = self.background
if self.background_model and background:
if self._background_parameters_changed:
values = self.background_model.evaluate_geom(geom=self.background.geom)
if self._background_cached is None:
self._background_cached = background * values
else:
self._background_cached.quantity = (
background.quantity * values.value
)
return self._background_cached
else:
return background
return background
@property
def _background_parameters_changed(self):
values = self.background_model.parameters.value
changed = ~np.all(self._background_parameters_cached == values)
if changed:
self._background_parameters_cached = values
return changed
[docs]
def npred_signal(self, model_names=None, stack=True):
"""Model predicted signal counts.
If a list of model name is passed, predicted counts from these components are returned.
If stack is set to True, a map of the sum of all the predicted counts is returned.
If stack is set to False, a map with an additional axis representing the models is returned.
Parameters
----------
model_names : list of str
List of name of SkyModel for which to compute the npred.
If none, all the SkyModel predicted counts are computed.
stack : bool
Whether to stack the npred maps upon each other.
Returns
-------
npred_sig : `gammapy.maps.Map`
Map of the predicted signal counts.
"""
npred_total = Map.from_geom(self._geom, dtype=float)
evaluators = self.evaluators
if model_names is not None:
if isinstance(model_names, str):
model_names = [model_names]
evaluators = {name: self.evaluators[name] for name in model_names}
npred_list = []
labels = []
for evaluator_name, evaluator in evaluators.items():
if evaluator.needs_update:
evaluator.update(
self.exposure,
self.psf,
self.edisp,
self._geom,
self.mask_image,
)
if evaluator.contributes:
npred = evaluator.compute_npred()
if stack:
npred_total.stack(npred)
else:
npred_geom = Map.from_geom(self._geom, dtype=float)
npred_geom.stack(npred)
labels.append(evaluator_name)
npred_list.append(npred_geom)
if not USE_NPRED_CACHE:
evaluator.reset_cache_properties()
if npred_list != []:
label_axis = LabelMapAxis(labels=labels, name="models")
npred_total = Map.from_stack(npred_list, axis=label_axis)
return npred_total
[docs]
@classmethod
def from_geoms(
cls,
geom,
geom_exposure=None,
geom_psf=None,
geom_edisp=None,
reference_time="2000-01-01",
name=None,
**kwargs,
):
"""
Create a MapDataset object with zero filled maps according to the specified geometries.
Parameters
----------
geom : `Geom`
Geometry for the counts and background maps.
geom_exposure : `Geom`
Geometry for the exposure map. Default is None.
geom_psf : `Geom`
Geometry for the PSF map. Default is None.
geom_edisp : `Geom`
Geometry for the energy dispersion kernel map.
If geom_edisp has a migra axis, this will create an EDispMap instead. Default is None.
reference_time : `~astropy.time.Time`
The reference time to use in GTI definition. Default is "2000-01-01".
name : str
Name of the returned dataset. Default is None.
kwargs : dict, optional
Keyword arguments to be passed.
Returns
-------
dataset : `MapDataset` or `SpectrumDataset`
A dataset containing zero filled maps.
"""
name = make_name(name)
kwargs = kwargs.copy()
kwargs["name"] = name
kwargs["counts"] = Map.from_geom(geom, unit="")
kwargs["background"] = Map.from_geom(geom, unit="")
if geom_exposure:
kwargs["exposure"] = Map.from_geom(geom_exposure, unit="m2 s")
if geom_edisp:
if "energy" in geom_edisp.axes.names:
kwargs["edisp"] = EDispKernelMap.from_geom(geom_edisp)
else:
kwargs["edisp"] = EDispMap.from_geom(geom_edisp)
if geom_psf:
if "energy_true" in geom_psf.axes.names:
kwargs["psf"] = PSFMap.from_geom(geom_psf)
elif "energy" in geom_psf.axes.names:
kwargs["psf"] = RecoPSFMap.from_geom(geom_psf)
kwargs.setdefault(
"gti", GTI.create([] * u.s, [] * u.s, reference_time=reference_time)
)
kwargs["mask_safe"] = Map.from_geom(geom, unit="", dtype=bool)
return cls(**kwargs)
[docs]
@classmethod
def create(
cls,
geom,
energy_axis_true=None,
migra_axis=None,
rad_axis=None,
binsz_irf=BINSZ_IRF_DEFAULT,
reference_time="2000-01-01",
name=None,
meta_table=None,
reco_psf=False,
**kwargs,
):
"""Create a MapDataset object with zero filled maps.
Parameters
----------
geom : `~gammapy.maps.WcsGeom`
Reference target geometry in reco energy, used for counts and background maps.
energy_axis_true : `~gammapy.maps.MapAxis`, optional
True energy axis used for IRF maps. Default is None.
migra_axis : `~gammapy.maps.MapAxis`, optional
If set, this provides the migration axis for the energy dispersion map.
If not set, an EDispKernelMap is produced instead. Default is None.
rad_axis : `~gammapy.maps.MapAxis`, optional
Rad axis for the PSF map. Default is None.
binsz_irf : float
IRF Map pixel size in degrees. Default is BINSZ_IRF_DEFAULT.
reference_time : `~astropy.time.Time`
The reference time to use in GTI definition. Default is "2000-01-01".
name : str, optional
Name of the returned dataset. Default is None.
meta_table : `~astropy.table.Table`, optional
Table listing information on observations used to create the dataset.
One line per observation for stacked datasets. Default is None.
reco_psf : bool
Use reconstructed energy for the PSF geometry. Default is False.
Returns
-------
empty_maps : `MapDataset`
A MapDataset containing zero filled maps.
Examples
--------
>>> from gammapy.datasets import MapDataset
>>> from gammapy.maps import WcsGeom, MapAxis
>>> energy_axis = MapAxis.from_energy_bounds(1.0, 10.0, 4, unit="TeV")
>>> energy_axis_true = MapAxis.from_energy_bounds(
... 0.5, 20, 10, unit="TeV", name="energy_true"
... )
>>> geom = WcsGeom.create(
... skydir=(83.633, 22.014),
... binsz=0.02, width=(2, 2),
... frame="icrs",
... proj="CAR",
... axes=[energy_axis]
... )
>>> empty = MapDataset.create(geom=geom, energy_axis_true=energy_axis_true, name="empty")
"""
geoms = create_map_dataset_geoms(
geom=geom,
energy_axis_true=energy_axis_true,
rad_axis=rad_axis,
migra_axis=migra_axis,
binsz_irf=binsz_irf,
reco_psf=reco_psf,
)
kwargs.update(geoms)
return cls.from_geoms(
reference_time=reference_time, name=name, meta_table=meta_table, **kwargs
)
@property
def mask_safe_image(self):
"""Reduced safe mask."""
if self.mask_safe is None:
return None
return self.mask_safe.reduce_over_axes(func=np.logical_or)
@property
def mask_fit_image(self):
"""Reduced fit mask."""
if self.mask_fit is None:
return None
return self.mask_fit.reduce_over_axes(func=np.logical_or)
@property
def mask_image(self):
"""Reduced mask."""
if self.mask is None:
mask = Map.from_geom(self._geom.to_image(), dtype=bool)
mask.data |= True
return mask
return self.mask.reduce_over_axes(func=np.logical_or)
@property
def mask_safe_psf(self):
"""Safe mask for PSF maps."""
if self.mask_safe is None or self.psf is None:
return None
geom = self.psf.psf_map.geom.squash("energy_true").squash("rad")
mask_safe_psf = self.mask_safe_image.interp_to_geom(geom.to_image())
return mask_safe_psf.to_cube(geom.axes)
@property
def mask_safe_edisp(self):
"""Safe mask for edisp maps."""
if self.mask_safe is None or self.edisp is None:
return None
if self.mask_safe.geom.is_region:
return self.mask_safe
geom = self.edisp.edisp_map.geom.squash("energy_true")
if "migra" in geom.axes.names:
geom = geom.squash("migra")
mask_safe_edisp = self.mask_safe_image.interp_to_geom(
geom.to_image(), fill_value=None
)
return mask_safe_edisp.to_cube(geom.axes)
# allow extrapolation only along spatial dimension
# to support case where mask_safe geom and irfs geom are different
geom_same_axes = geom.to_image().to_cube(self.mask_safe.geom.axes)
mask_safe_edisp = self.mask_safe.interp_to_geom(geom_same_axes, fill_value=None)
mask_safe_edisp = mask_safe_edisp.interp_to_geom(geom)
return mask_safe_edisp
[docs]
def to_masked(self, name=None, nan_to_num=True):
"""Return masked dataset.
Parameters
----------
name : str, optional
Name of the masked dataset. Default is None.
nan_to_num : bool
Non-finite values are replaced by zero if True. Default is True.
Returns
-------
dataset : `MapDataset` or `SpectrumDataset`
Masked dataset.
"""
dataset = self.__class__.from_geoms(**self.geoms, name=name)
dataset.stack(self, nan_to_num=nan_to_num)
return dataset
[docs]
def stack(self, other, nan_to_num=True):
r"""Stack another dataset in place. The original dataset is modified.
Safe mask is applied to the other dataset to compute the stacked counts data.
Counts outside the safe mask are lost.
Note that the masking is not applied to the current dataset. If masking needs
to be applied to it, use `~gammapy.MapDataset.to_masked()` first.
The stacking of 2 datasets is implemented as follows. Here, :math:`k`
denotes a bin in reconstructed energy and :math:`j = {1,2}` is the dataset number.
The ``mask_safe`` of each dataset is defined as:
.. math::
\epsilon_{jk} =\left\{\begin{array}{cl} 1, &
\mbox{if bin k is inside the thresholds}\\ 0, &
\mbox{otherwise} \end{array}\right.
Then the total ``counts`` and model background ``bkg`` are computed according to:
.. math::
\overline{\mathrm{n_{on}}}_k = \mathrm{n_{on}}_{1k} \cdot \epsilon_{1k} +
\mathrm{n_{on}}_{2k} \cdot \epsilon_{2k}.
\overline{bkg}_k = bkg_{1k} \cdot \epsilon_{1k} +
bkg_{2k} \cdot \epsilon_{2k}.
The stacked ``safe_mask`` is then:
.. math::
\overline{\epsilon_k} = \epsilon_{1k} OR \epsilon_{2k}.
For details, see :ref:`stack`.
Parameters
----------
other : `~gammapy.datasets.MapDataset` or `~gammapy.datasets.MapDatasetOnOff`
Map dataset to be stacked with this one. If other is an on-off
dataset alpha * counts_off is used as a background model.
nan_to_num : bool
Non-finite values are replaced by zero if True. Default is True.
"""
if self.counts and other.counts:
self.counts.stack(
other.counts, weights=other.mask_safe, nan_to_num=nan_to_num
)
if self.exposure and other.exposure:
self.exposure.stack(
other.exposure, weights=other.mask_safe_image, nan_to_num=nan_to_num
)
# TODO: check whether this can be improved e.g. handling this in GTI
if "livetime" in other.exposure.meta and np.any(other.mask_safe_image):
if "livetime" in self.exposure.meta:
self.exposure.meta["livetime"] += other.exposure.meta["livetime"]
else:
self.exposure.meta["livetime"] = other.exposure.meta[
"livetime"
].copy()
if self.stat_type == "cash":
if self.background and other.background:
background = self.npred_background()
background.stack(
other.npred_background(),
weights=other.mask_safe,
nan_to_num=nan_to_num,
)
self.background = background
if self.psf and other.psf:
self.psf.stack(other.psf, weights=other.mask_safe_psf)
if self.edisp and other.edisp:
self.edisp.stack(other.edisp, weights=other.mask_safe_edisp)
if self.mask_safe and other.mask_safe:
self.mask_safe.stack(other.mask_safe)
if self.mask_fit and other.mask_fit:
self.mask_fit.stack(other.mask_fit)
elif other.mask_fit:
self.mask_fit = other.mask_fit.copy()
if self.gti and other.gti:
self.gti.stack(other.gti)
self.gti = self.gti.union()
if self.meta_table and other.meta_table:
self.meta_table = hstack_columns(self.meta_table, other.meta_table)
elif other.meta_table:
self.meta_table = other.meta_table.copy()
if self.meta and other.meta:
self.meta.stack(other.meta)
[docs]
def stat_array(self):
"""Statistic function value per bin given the current model parameters."""
return cash(n_on=self.counts.data, mu_on=self.npred().data)
[docs]
def residuals(self, method="diff", **kwargs):
"""Compute residuals map.
Parameters
----------
method : {"diff", "diff/model", "diff/sqrt(model)"}
Method used to compute the residuals. Available options are:
- "diff" (default): data - model.
- "diff/model": (data - model) / model.
- "diff/sqrt(model)": (data - model) / sqrt(model).
Default is "diff".
**kwargs : dict, optional
Keyword arguments forwarded to `Map.smooth()`.
Returns
-------
residuals : `gammapy.maps.Map`
Residual map.
"""
npred, counts = self.npred(), self.counts.copy()
if self.mask:
npred = npred * self.mask
counts = counts * self.mask
if kwargs:
kwargs.setdefault("mode", "constant")
kwargs.setdefault("width", "0.1 deg")
kwargs.setdefault("kernel", "gauss")
with np.errstate(invalid="ignore", divide="ignore"):
npred = npred.smooth(**kwargs)
counts = counts.smooth(**kwargs)
if self.mask:
mask = self.mask.smooth(**kwargs)
npred /= mask
counts /= mask
residuals = self._compute_residuals(counts, npred, method=method)
if self.mask:
residuals.data[~self.mask.data] = np.nan
return residuals
[docs]
def plot_residuals_spatial(
self,
ax=None,
method="diff",
smooth_kernel="gauss",
smooth_radius="0.1 deg",
**kwargs,
):
"""Plot spatial residuals.
The normalization used for the residuals computation can be controlled
using the method parameter.
Parameters
----------
ax : `~astropy.visualization.wcsaxes.WCSAxes`, optional
Axes to plot on. Default is None.
method : {"diff", "diff/model", "diff/sqrt(model)"}
Normalization used to compute the residuals, see `MapDataset.residuals`. Default is "diff".
smooth_kernel : {"gauss", "box"}
Kernel shape. Default is "gauss".
smooth_radius: `~astropy.units.Quantity`, str or float
Smoothing width given as quantity or float. If a float is given, it
is interpreted as smoothing width in pixels. Default is "0.1 deg".
**kwargs : dict, optional
Keyword arguments passed to `~matplotlib.axes.Axes.imshow`.
Returns
-------
ax : `~astropy.visualization.wcsaxes.WCSAxes`
WCSAxes object.
Examples
--------
>>> from gammapy.datasets import MapDataset
>>> dataset = MapDataset.read("$GAMMAPY_DATA/cta-1dc-gc/cta-1dc-gc.fits.gz")
>>> kwargs = {"cmap": "RdBu_r", "vmin":-5, "vmax":5, "add_cbar": True}
>>> dataset.plot_residuals_spatial(method="diff/sqrt(model)", **kwargs) # doctest: +SKIP
"""
counts, npred = self.counts.copy(), self.npred()
if counts.geom.is_region:
raise ValueError("Cannot plot spatial residuals for RegionNDMap")
if self.mask is not None:
counts *= self.mask
npred *= self.mask
counts_spatial = counts.sum_over_axes().smooth(
width=smooth_radius, kernel=smooth_kernel
)
npred_spatial = npred.sum_over_axes().smooth(
width=smooth_radius, kernel=smooth_kernel
)
residuals = self._compute_residuals(counts_spatial, npred_spatial, method)
if self.mask_safe is not None:
mask = self.mask_safe.reduce_over_axes(func=np.logical_or, keepdims=True)
residuals.data[~mask.data] = np.nan
kwargs.setdefault("add_cbar", True)
kwargs.setdefault("cmap", "coolwarm")
kwargs.setdefault("vmin", -5)
kwargs.setdefault("vmax", 5)
ax = residuals.plot(ax, **kwargs)
return ax
[docs]
def plot_residuals_spectral(self, ax=None, method="diff", region=None, **kwargs):
"""Plot spectral residuals.
The residuals are extracted from the provided region, and the normalization
used for its computation can be controlled using the method parameter.
The error bars are computed using the uncertainty on the excess with a symmetric assumption.
Parameters
----------
ax : `~matplotlib.axes.Axes`, optional
Axes to plot on. Default is None.
method : {"diff", "diff/sqrt(model)"}
Normalization used to compute the residuals, see `SpectrumDataset.residuals`. Default is "diff".
region : `~regions.SkyRegion` (required)
Target sky region. Default is None.
**kwargs : dict, optional
Keyword arguments passed to `~matplotlib.axes.Axes.errorbar`.
Returns
-------
ax : `~matplotlib.axes.Axes`
Axes object.
Examples
--------
>>> from gammapy.datasets import MapDataset
>>> dataset = MapDataset.read("$GAMMAPY_DATA/cta-1dc-gc/cta-1dc-gc.fits.gz")
>>> kwargs = {"markerfacecolor": "blue", "markersize":8, "marker":'s'}
>>> dataset.plot_residuals_spectral(method="diff/sqrt(model)", **kwargs) # doctest: +SKIP
"""
counts, npred = self.counts.copy(), self.npred()
counts_spec = counts.get_spectrum(region)
npred_spec = npred.get_spectrum(region)
residuals = self._compute_residuals(counts_spec, npred_spec, method)
if self.stat_type == "wstat":
counts_off = (self.counts_off).get_spectrum(region)
with np.errstate(invalid="ignore"):
alpha = self.background.get_spectrum(region) / counts_off
mu_sig = self.npred_signal().get_spectrum(region)
stat = WStatCountsStatistic(
n_on=counts_spec,
n_off=counts_off,
alpha=alpha,
mu_sig=mu_sig,
)
elif self.stat_type == "cash":
stat = CashCountsStatistic(counts_spec.data, npred_spec.data)
excess_error = stat.error
if method == "diff":
yerr = excess_error
elif method == "diff/sqrt(model)":
yerr = excess_error / np.sqrt(npred_spec.data)
else:
raise ValueError(
'Invalid method, choose between "diff" and "diff/sqrt(model)"'
)
kwargs.setdefault("color", kwargs.pop("c", "black"))
ax = residuals.plot(ax, yerr=yerr, **kwargs)
ax.axhline(0, color=kwargs["color"], lw=0.5)
label = self._residuals_labels[method]
ax.set_ylabel(f"Residuals ({label})")
ax.set_yscale("linear")
ymin = 1.05 * np.nanmin(residuals.data - yerr)
ymax = 1.05 * np.nanmax(residuals.data + yerr)
ax.set_ylim(ymin, ymax)
return ax
[docs]
def plot_residuals(
self,
ax_spatial=None,
ax_spectral=None,
kwargs_spatial=None,
kwargs_spectral=None,
):
"""Plot spatial and spectral residuals in two panels.
Calls `~MapDataset.plot_residuals_spatial` and `~MapDataset.plot_residuals_spectral`.
The spectral residuals are extracted from the provided region, and the
normalization used for its computation can be controlled using the method
parameter. The region outline is overlaid on the residuals map. If no region is passed,
the residuals are computed for the entire map.
Parameters
----------
ax_spatial : `~astropy.visualization.wcsaxes.WCSAxes`, optional
Axes to plot spatial residuals on. Default is None.
ax_spectral : `~matplotlib.axes.Axes`, optional
Axes to plot spectral residuals on. Default is None.
kwargs_spatial : dict, optional
Keyword arguments passed to `~MapDataset.plot_residuals_spatial`. Default is None.
kwargs_spectral : dict, optional
Keyword arguments passed to `~MapDataset.plot_residuals_spectral`.
The region should be passed as a dictionary key. Default is None.
Returns
-------
ax_spatial, ax_spectral : `~astropy.visualization.wcsaxes.WCSAxes`, `~matplotlib.axes.Axes`
Spatial and spectral residuals plots.
Examples
--------
>>> from regions import CircleSkyRegion
>>> from astropy.coordinates import SkyCoord
>>> import astropy.units as u
>>> from gammapy.datasets import MapDataset
>>> dataset = MapDataset.read("$GAMMAPY_DATA/cta-1dc-gc/cta-1dc-gc.fits.gz")
>>> reg = CircleSkyRegion(SkyCoord(0,0, unit="deg", frame="galactic"), radius=1.0 * u.deg)
>>> kwargs_spatial = {"cmap": "RdBu_r", "vmin":-5, "vmax":5, "add_cbar": True}
>>> kwargs_spectral = {"region":reg, "markerfacecolor": "blue", "markersize": 8, "marker": "s"}
>>> dataset.plot_residuals(kwargs_spatial=kwargs_spatial, kwargs_spectral=kwargs_spectral) # doctest: +SKIP
"""
ax_spatial, ax_spectral = get_axes(
ax_spatial,
ax_spectral,
12,
4,
[1, 2, 1],
[1, 2, 2],
{"projection": self._geom.to_image().wcs},
)
kwargs_spatial = kwargs_spatial or {}
kwargs_spectral = kwargs_spectral or {}
self.plot_residuals_spatial(ax_spatial, **kwargs_spatial)
self.plot_residuals_spectral(ax_spectral, **kwargs_spectral)
# Overlay spectral extraction region on the spatial residuals
region = kwargs_spectral.get("region")
if region is not None:
pix_region = region.to_pixel(self._geom.to_image().wcs)
pix_region.plot(ax=ax_spatial)
return ax_spatial, ax_spectral
[docs]
def stat_sum(self):
"""Total statistic function value given the current model parameters and priors."""
prior_stat_sum = 0.0
if self.models is not None:
prior_stat_sum = self.models.parameters.prior_stat_sum()
counts, npred = self.counts.data.astype(float), self.npred().data
if self.mask is not None:
return (
cash_sum_cython(counts[self.mask.data], npred[self.mask.data])
+ prior_stat_sum
)
else:
return cash_sum_cython(counts.ravel(), npred.ravel()) + prior_stat_sum
[docs]
def fake(self, random_state="random-seed"):
"""Simulate fake counts for the current model and reduced IRFs.
This method overwrites the counts defined on the dataset object.
Parameters
----------
random_state : {int, 'random-seed', 'global-rng', `~numpy.random.RandomState`}
Defines random number generator initialisation.
Passed to `~gammapy.utils.random.get_random_state`. Default is "random-seed".
"""
random_state = get_random_state(random_state)
npred = self.npred()
data = np.nan_to_num(npred.data, copy=True, nan=0.0, posinf=0.0, neginf=0.0)
npred.data = random_state.poisson(data)
npred.data = npred.data.astype("float")
self.counts = npred
[docs]
def to_hdulist(self):
"""Convert map dataset to list of HDUs.
Returns
-------
hdulist : `~astropy.io.fits.HDUList`
Map dataset list of HDUs.
"""
# TODO: what todo about the model and background model parameters?
exclude_primary = slice(1, None)
hdu_primary = fits.PrimaryHDU()
header = hdu_primary.header
header["NAME"] = self.name
header.update(self.meta.to_header())
hdulist = fits.HDUList([hdu_primary])
if self.counts is not None:
hdulist += self.counts.to_hdulist(hdu="counts")[exclude_primary]
if self.exposure is not None:
hdulist += self.exposure.to_hdulist(hdu="exposure")[exclude_primary]
if self.background is not None:
hdulist += self.background.to_hdulist(hdu="background")[exclude_primary]
if self.edisp is not None:
hdulist += self.edisp.to_hdulist()[exclude_primary]
if self.psf is not None:
hdulist += self.psf.to_hdulist()[exclude_primary]
if self.mask_safe is not None:
hdulist += self.mask_safe.to_hdulist(hdu="mask_safe")[exclude_primary]
if self.mask_fit is not None:
hdulist += self.mask_fit.to_hdulist(hdu="mask_fit")[exclude_primary]
if self.gti is not None:
hdulist.append(self.gti.to_table_hdu())
if self.meta_table is not None:
hdulist.append(fits.BinTableHDU(self.meta_table, name="META_TABLE"))
return hdulist
[docs]
@classmethod
def from_hdulist(cls, hdulist, name=None, lazy=False, format="gadf"):
"""Create map dataset from list of HDUs.
Parameters
----------
hdulist : `~astropy.io.fits.HDUList`
List of HDUs.
name : str, optional
Name of the new dataset. Default is None.
lazy : bool
Whether to lazy load data into memory. Default is False.
format : {"gadf"}
Format the hdulist is given in. Default is "gadf".
Returns
-------
dataset : `MapDataset`
Map dataset.
"""
name = make_name(name)
kwargs = {"name": name}
kwargs["meta"] = MapDatasetMetaData.from_header(hdulist["PRIMARY"].header)
if "COUNTS" in hdulist:
kwargs["counts"] = Map.from_hdulist(hdulist, hdu="counts", format=format)
if "EXPOSURE" in hdulist:
exposure = Map.from_hdulist(hdulist, hdu="exposure", format=format)
if exposure.geom.axes[0].name == "energy":
exposure.geom.axes[0].name = "energy_true"
kwargs["exposure"] = exposure
if "BACKGROUND" in hdulist:
kwargs["background"] = Map.from_hdulist(
hdulist, hdu="background", format=format
)
if "EDISP" in hdulist:
kwargs["edisp"] = EDispMap.from_hdulist(
hdulist, hdu="edisp", exposure_hdu="edisp_exposure", format=format
)
if "PSF" in hdulist:
kwargs["psf"] = PSFMap.from_hdulist(
hdulist, hdu="psf", exposure_hdu="psf_exposure", format=format
)
if "MASK_SAFE" in hdulist:
mask_safe = Map.from_hdulist(hdulist, hdu="mask_safe", format=format)
mask_safe.data = mask_safe.data.astype(bool)
kwargs["mask_safe"] = mask_safe
if "MASK_FIT" in hdulist:
mask_fit = Map.from_hdulist(hdulist, hdu="mask_fit", format=format)
mask_fit.data = mask_fit.data.astype(bool)
kwargs["mask_fit"] = mask_fit
if "GTI" in hdulist:
gti = GTI.from_table_hdu(hdulist["GTI"])
kwargs["gti"] = gti
if "META_TABLE" in hdulist:
meta_table = Table.read(hdulist, hdu="META_TABLE")
kwargs["meta_table"] = meta_table
return cls(**kwargs)
[docs]
def write(self, filename, overwrite=False, checksum=False):
"""Write Dataset to file.
A MapDataset is serialised using the GADF format with a WCS geometry.
A SpectrumDataset uses the same format, with a RegionGeom.
Parameters
----------
filename : str
Filename to write to.
overwrite : bool, optional
Overwrite existing file. Default is False.
checksum : bool
When True adds both DATASUM and CHECKSUM cards to the headers written to the file.
Default is False.
"""
self.to_hdulist().writeto(
str(make_path(filename)), overwrite=overwrite, checksum=checksum
)
@classmethod
def _read_lazy(cls, name, filename, cache, format=format):
name = make_name(name)
kwargs = {"name": name}
try:
kwargs["gti"] = GTI.read(filename)
except KeyError:
pass
path = make_path(filename)
for hdu_name in ["counts", "exposure", "mask_fit", "mask_safe", "background"]:
kwargs[hdu_name] = HDULocation(
hdu_class="map",
file_dir=path.parent,
file_name=path.name,
hdu_name=hdu_name.upper(),
cache=cache,
format=format,
)
kwargs["edisp"] = HDULocation(
hdu_class="edisp_map",
file_dir=path.parent,
file_name=path.name,
hdu_name="EDISP",
cache=cache,
format=format,
)
kwargs["psf"] = HDULocation(
hdu_class="psf_map",
file_dir=path.parent,
file_name=path.name,
hdu_name="PSF",
cache=cache,
format=format,
)
return cls(**kwargs)
[docs]
@classmethod
def read(
cls, filename, name=None, lazy=False, cache=True, format="gadf", checksum=False
):
"""Read a dataset from file.
Parameters
----------
filename : str
Filename to read from.
name : str, optional
Name of the new dataset. Default is None.
lazy : bool
Whether to lazy load data into memory. Default is False.
cache : bool
Whether to cache the data after loading. Default is True.
format : {"gadf"}
Format of the dataset file. Default is "gadf".
checksum : bool
If True checks both DATASUM and CHECKSUM cards in the file headers. Default is False.
Returns
-------
dataset : `MapDataset`
Map dataset.
"""
if name is None:
header = fits.getheader(str(make_path(filename)))
name = header.get("NAME", name)
ds_name = make_name(name)
if lazy:
return cls._read_lazy(
name=ds_name, filename=filename, cache=cache, format=format
)
else:
with fits.open(
str(make_path(filename)), memmap=False, checksum=checksum
) as hdulist:
return cls.from_hdulist(hdulist, name=ds_name, format=format)
[docs]
@classmethod
def from_dict(cls, data, lazy=False, cache=True):
"""Create from dicts and models list generated from YAML serialization."""
filename = make_path(data["filename"])
dataset = cls.read(filename, name=data["name"], lazy=lazy, cache=cache)
return dataset
@property
def _counts_statistic(self):
"""Counts statistics of the dataset."""
return CashCountsStatistic(self.counts, self.npred_background())
[docs]
def info_dict(self, in_safe_data_range=True):
"""Info dict with summary statistics, summed over energy.
Parameters
----------
in_safe_data_range : bool
Whether to sum only in the safe energy range. Default is True.
Returns
-------
info_dict : dict
Dictionary with summary info.
"""
info = {}
info["name"] = self.name
if self.mask_safe and in_safe_data_range:
mask = self.mask_safe.data.astype(bool)
else:
mask = slice(None)
counts = 0
background, excess, sqrt_ts = np.nan, np.nan, np.nan
if self.counts:
counts = self.counts.data[mask].sum()
if self.background:
summed_stat = self._counts_statistic[mask].sum()
background = self.background.data[mask].sum()
excess = summed_stat.n_sig
sqrt_ts = summed_stat.sqrt_ts
info["counts"] = int(counts)
info["excess"] = float(excess)
info["sqrt_ts"] = sqrt_ts
info["background"] = float(background)
npred = np.nan
if self.models or not np.isnan(background):
npred = self.npred().data[mask].sum()
info["npred"] = float(npred)
npred_background = np.nan
if self.background:
npred_background = self.npred_background().data[mask].sum()
info["npred_background"] = float(npred_background)
npred_signal = np.nan
if self.models and (
len(self.models) > 1 or not isinstance(self.models[0], FoVBackgroundModel)
):
npred_signal = self.npred_signal().data[mask].sum()
info["npred_signal"] = float(npred_signal)
exposure_min = np.nan * u.Unit("cm s")
exposure_max = np.nan * u.Unit("cm s")
livetime = np.nan * u.s
if self.exposure is not None:
mask_exposure = self.exposure.data > 0
if self.mask_safe is not None:
mask_spatial = self.mask_safe.reduce_over_axes(func=np.logical_or).data
mask_exposure = mask_exposure & mask_spatial[np.newaxis, :, :]
if not mask_exposure.any():
mask_exposure = slice(None)
exposure_min = np.min(self.exposure.quantity[mask_exposure])
exposure_max = np.max(self.exposure.quantity[mask_exposure])
livetime = self.exposure.meta.get("livetime", np.nan * u.s).copy()
info["exposure_min"] = exposure_min.item()
info["exposure_max"] = exposure_max.item()
info["livetime"] = livetime
ontime = u.Quantity(np.nan, "s")
if self.gti:
ontime = self.gti.time_sum
info["ontime"] = ontime
info["counts_rate"] = info["counts"] / info["livetime"]
info["background_rate"] = info["background"] / info["livetime"]
info["excess_rate"] = info["excess"] / info["livetime"]
# data section
n_bins = 0
if self.counts is not None:
n_bins = self.counts.data.size
info["n_bins"] = int(n_bins)
n_fit_bins = 0
if self.mask is not None:
n_fit_bins = np.sum(self.mask.data)
info["n_fit_bins"] = int(n_fit_bins)
info["stat_type"] = self.stat_type
stat_sum = np.nan
if self.counts is not None and self.models is not None:
stat_sum = self.stat_sum()
info["stat_sum"] = float(stat_sum)
return info
[docs]
def to_spectrum_dataset(self, on_region, containment_correction=False, name=None):
"""Return a ~gammapy.datasets.SpectrumDataset from on_region.
Counts and background are summed in the on_region. Exposure is taken
from the average exposure.
The energy dispersion kernel is obtained at the on_region center.
Only regions with centers are supported.
The model is not exported to the ~gammapy.datasets.SpectrumDataset.
It must be set after the dataset extraction.
Parameters
----------
on_region : `~regions.SkyRegion`
The input ON region on which to extract the spectrum.
containment_correction : bool
Apply containment correction for point sources and circular on regions. Default is False.
name : str, optional
Name of the new dataset. Default is None.
Returns
-------
dataset : `~gammapy.datasets.SpectrumDataset`
The resulting reduced dataset.
"""
from .spectrum import SpectrumDataset
dataset = self.to_region_map_dataset(region=on_region, name=name)
if containment_correction:
if not isinstance(on_region, CircleSkyRegion):
raise TypeError(
"Containment correction is only supported for" " `CircleSkyRegion`."
)
elif self.psf is None or isinstance(self.psf, PSFKernel):
raise ValueError("No PSFMap set. Containment correction impossible")
else:
geom = dataset.exposure.geom
energy_true = geom.axes["energy_true"].center
containment = self.psf.containment(
position=on_region.center,
energy_true=energy_true,
rad=on_region.radius,
)
dataset.exposure.quantity *= containment.reshape(geom.data_shape)
kwargs = {"name": name}
for key in [
"counts",
"edisp",
"mask_safe",
"mask_fit",
"exposure",
"gti",
"meta_table",
]:
kwargs[key] = getattr(dataset, key)
if self.stat_type == "cash":
kwargs["background"] = dataset.background
return SpectrumDataset(**kwargs)
[docs]
def to_region_map_dataset(self, region, name=None):
"""Integrate the map dataset in a given region.
Counts and background of the dataset are integrated in the given region,
taking the safe mask into account. The exposure is averaged in the
region again taking the safe mask into account. The PSF and energy
dispersion kernel are taken at the center of the region.
Parameters
----------
region : `~regions.SkyRegion`
Region from which to extract the spectrum.
name : str, optional
Name of the new dataset. Default is None.
Returns
-------
dataset : `~gammapy.datasets.MapDataset`
The resulting reduced dataset.
"""
name = make_name(name)
kwargs = {"gti": self.gti, "name": name, "meta_table": self.meta_table}
if self.mask_safe:
kwargs["mask_safe"] = self.mask_safe.to_region_nd_map(region, func=np.any)
if self.mask_fit:
kwargs["mask_fit"] = self.mask_fit.to_region_nd_map(region, func=np.any)
if self.counts:
kwargs["counts"] = self.counts.to_region_nd_map(
region, np.sum, weights=self.mask_safe
)
if self.stat_type == "cash" and self.background:
kwargs["background"] = self.background.to_region_nd_map(
region, func=np.sum, weights=self.mask_safe
)
if self.exposure:
kwargs["exposure"] = self.exposure.to_region_nd_map(region, func=np.mean)
region = region.center if region else None
# TODO: Compute average psf in region
if self.psf:
kwargs["psf"] = self.psf.to_region_nd_map(region)
# TODO: Compute average edisp in region
if self.edisp is not None:
kwargs["edisp"] = self.edisp.to_region_nd_map(region)
return self.__class__(**kwargs)
[docs]
def cutout(self, position, width, mode="trim", name=None):
"""Cutout map dataset.
Parameters
----------
position : `~astropy.coordinates.SkyCoord`
Center position of the cutout region.
width : tuple of `~astropy.coordinates.Angle`
Angular sizes of the region in (lon, lat) in that specific order.
If only one value is passed, a square region is extracted.
mode : {'trim', 'partial', 'strict'}
Mode option for Cutout2D, for details see `~astropy.nddata.utils.Cutout2D`. Default is "trim".
name : str, optional
Name of the new dataset. Default is None.
Returns
-------
cutout : `MapDataset`
Cutout map dataset.
"""
name = make_name(name)
kwargs = {"gti": self.gti, "name": name, "meta_table": self.meta_table}
cutout_kwargs = {"position": position, "width": width, "mode": mode}
if self.counts is not None:
kwargs["counts"] = self.counts.cutout(**cutout_kwargs)
if self.exposure is not None:
kwargs["exposure"] = self.exposure.cutout(**cutout_kwargs)
if self.background is not None and self.stat_type == "cash":
kwargs["background"] = self.background.cutout(**cutout_kwargs)
if self.edisp is not None:
kwargs["edisp"] = self.edisp.cutout(**cutout_kwargs)
if self.psf is not None:
kwargs["psf"] = self.psf.cutout(**cutout_kwargs)
if self.mask_safe is not None:
kwargs["mask_safe"] = self.mask_safe.cutout(**cutout_kwargs)
if self.mask_fit is not None:
kwargs["mask_fit"] = self.mask_fit.cutout(**cutout_kwargs)
return self.__class__(**kwargs)
[docs]
def downsample(self, factor, axis_name=None, name=None):
"""Downsample map dataset.
The PSFMap and EDispKernelMap are not downsampled, except if
a corresponding axis is given.
Parameters
----------
factor : int
Downsampling factor.
axis_name : str, optional
Which non-spatial axis to downsample. By default only spatial axes are downsampled. Default is None.
name : str, optional
Name of the downsampled dataset. Default is None.
Returns
-------
dataset : `MapDataset` or `SpectrumDataset`
Downsampled map dataset.
"""
name = make_name(name)
kwargs = {"gti": self.gti, "name": name, "meta_table": self.meta_table}
if self.counts is not None:
kwargs["counts"] = self.counts.downsample(
factor=factor,
preserve_counts=True,
axis_name=axis_name,
weights=self.mask_safe,
)
if self.exposure is not None:
if axis_name is None:
kwargs["exposure"] = self.exposure.downsample(
factor=factor, preserve_counts=False, axis_name=None
)
else:
kwargs["exposure"] = self.exposure.copy()
if self.background is not None and self.stat_type == "cash":
kwargs["background"] = self.background.downsample(
factor=factor, axis_name=axis_name, weights=self.mask_safe
)
if self.edisp is not None:
if axis_name is not None:
kwargs["edisp"] = self.edisp.downsample(
factor=factor, axis_name=axis_name, weights=self.mask_safe_edisp
)
else:
kwargs["edisp"] = self.edisp.copy()
if self.psf is not None:
kwargs["psf"] = self.psf.copy()
if self.mask_safe is not None:
kwargs["mask_safe"] = self.mask_safe.downsample(
factor=factor, preserve_counts=False, axis_name=axis_name
)
if self.mask_fit is not None:
kwargs["mask_fit"] = self.mask_fit.downsample(
factor=factor, preserve_counts=False, axis_name=axis_name
)
return self.__class__(**kwargs)
[docs]
def pad(self, pad_width, mode="constant", name=None):
"""Pad the spatial dimensions of the dataset.
The padding only applies to counts, masks, background and exposure.
Counts, background and masks are padded with zeros, exposure is padded with edge value.
Parameters
----------
pad_width : {sequence, array_like, int}
Number of pixels padded to the edges of each axis.
mode : str
Pad mode. Default is "constant".
name : str, optional
Name of the padded dataset. Default is None.
Returns
-------
dataset : `MapDataset`
Padded map dataset.
"""
name = make_name(name)
kwargs = {"gti": self.gti, "name": name, "meta_table": self.meta_table}
if self.counts is not None:
kwargs["counts"] = self.counts.pad(pad_width=pad_width, mode=mode)
if self.exposure is not None:
kwargs["exposure"] = self.exposure.pad(pad_width=pad_width, mode=mode)
if self.background is not None:
kwargs["background"] = self.background.pad(pad_width=pad_width, mode=mode)
if self.edisp is not None:
kwargs["edisp"] = self.edisp.copy()
if self.psf is not None:
kwargs["psf"] = self.psf.copy()
if self.mask_safe is not None:
kwargs["mask_safe"] = self.mask_safe.pad(pad_width=pad_width, mode=mode)
if self.mask_fit is not None:
kwargs["mask_fit"] = self.mask_fit.pad(pad_width=pad_width, mode=mode)
return self.__class__(**kwargs)
[docs]
def slice_by_idx(self, slices, name=None):
"""Slice sub dataset.
The slicing only applies to the maps that define the corresponding axes.
Parameters
----------
slices : dict
Dictionary of axes names and integers or `slice` object pairs. Contains one
element for each non-spatial dimension. For integer indexing the
corresponding axes is dropped from the map. Axes not specified in the
dict are kept unchanged.
name : str, optional
Name of the sliced dataset. Default is None.
Returns
-------
dataset : `MapDataset` or `SpectrumDataset`
Sliced dataset.
Examples
--------
>>> from gammapy.datasets import MapDataset
>>> dataset = MapDataset.read("$GAMMAPY_DATA/cta-1dc-gc/cta-1dc-gc.fits.gz")
>>> slices = {"energy": slice(0, 3)} #to get the first 3 energy slices
>>> sliced = dataset.slice_by_idx(slices)
>>> print(sliced.geoms["geom"])
WcsGeom
<BLANKLINE>
axes : ['lon', 'lat', 'energy']
shape : (np.int64(320), np.int64(240), 3)
ndim : 3
frame : galactic
projection : CAR
center : 0.0 deg, 0.0 deg
width : 8.0 deg x 6.0 deg
wcs ref : 0.0 deg, 0.0 deg
<BLANKLINE>
"""
name = make_name(name)
kwargs = {"gti": self.gti, "name": name, "meta_table": self.meta_table}
if self.counts is not None:
kwargs["counts"] = self.counts.slice_by_idx(slices=slices)
if self.exposure is not None:
kwargs["exposure"] = self.exposure.slice_by_idx(slices=slices)
if self.background is not None and self.stat_type == "cash":
kwargs["background"] = self.background.slice_by_idx(slices=slices)
if self.edisp is not None:
kwargs["edisp"] = self.edisp.slice_by_idx(slices=slices)
if self.psf is not None:
kwargs["psf"] = self.psf.slice_by_idx(slices=slices)
if self.mask_safe is not None:
kwargs["mask_safe"] = self.mask_safe.slice_by_idx(slices=slices)
if self.mask_fit is not None:
kwargs["mask_fit"] = self.mask_fit.slice_by_idx(slices=slices)
return self.__class__(**kwargs)
[docs]
def slice_by_energy(self, energy_min=None, energy_max=None, name=None):
"""Select and slice datasets in energy range.
Parameters
----------
energy_min, energy_max : `~astropy.units.Quantity`, optional
Energy bounds to compute the flux point for. Default is None.
name : str, optional
Name of the sliced dataset. Default is None.
Returns
-------
dataset : `MapDataset`
Sliced Dataset.
Examples
--------
>>> from gammapy.datasets import MapDataset
>>> dataset = MapDataset.read("$GAMMAPY_DATA/cta-1dc-gc/cta-1dc-gc.fits.gz")
>>> sliced = dataset.slice_by_energy(energy_min="1 TeV", energy_max="5 TeV")
>>> sliced.data_shape
(3, np.int64(240), np.int64(320))
"""
name = make_name(name)
energy_axis = self._geom.axes["energy"]
if energy_min is None:
energy_min = energy_axis.bounds[0]
if energy_max is None:
energy_max = energy_axis.bounds[1]
energy_min, energy_max = u.Quantity(energy_min), u.Quantity(energy_max)
group = energy_axis.group_table(edges=[energy_min, energy_max])
is_normal = group["bin_type"] == "normal "
group = group[is_normal]
slices = {
"energy": slice(int(group["idx_min"][0]), int(group["idx_max"][0]) + 1)
}
return self.slice_by_idx(slices, name=name)
[docs]
def reset_data_cache(self):
"""Reset data cache to free memory space."""
for name in self._lazy_data_members:
if self.__dict__.pop(name, False):
log.info(f"Clearing {name} cache for dataset {self.name}")
[docs]
def resample_energy_axis(self, energy_axis, name=None):
"""Resample MapDataset over new reco energy axis.
Counts are summed taking into account safe mask.
Parameters
----------
energy_axis : `~gammapy.maps.MapAxis`
New reconstructed energy axis.
name : str, optional
Name of the new dataset. Default is None.
Returns
-------
dataset : `MapDataset` or `SpectrumDataset`
Resampled dataset.
"""
name = make_name(name)
kwargs = {"gti": self.gti, "name": name, "meta_table": self.meta_table}
if self.exposure:
kwargs["exposure"] = self.exposure
if self.psf:
kwargs["psf"] = self.psf
if self.mask_safe is not None:
kwargs["mask_safe"] = self.mask_safe.resample_axis(
axis=energy_axis, ufunc=np.logical_or
)
if self.mask_fit is not None:
kwargs["mask_fit"] = self.mask_fit.resample_axis(
axis=energy_axis, ufunc=np.logical_or
)
if self.counts is not None:
kwargs["counts"] = self.counts.resample_axis(
axis=energy_axis, weights=self.mask_safe
)
if self.background is not None and self.stat_type == "cash":
kwargs["background"] = self.background.resample_axis(
axis=energy_axis, weights=self.mask_safe
)
# Mask_safe or mask_irf??
if isinstance(self.edisp, EDispKernelMap):
kwargs["edisp"] = self.edisp.resample_energy_axis(
energy_axis=energy_axis, weights=self.mask_safe_edisp
)
else: # None or EDispMap
kwargs["edisp"] = self.edisp
return self.__class__(**kwargs)
[docs]
def to_image(self, name=None):
"""Create images by summing over the reconstructed energy axis.
Parameters
----------
name : str, optional
Name of the new dataset. Default is None.
Returns
-------
dataset : `MapDataset` or `SpectrumDataset`
Dataset integrated over non-spatial axes.
"""
energy_axis = self._geom.axes["energy"].squash()
return self.resample_energy_axis(energy_axis=energy_axis, name=name)
[docs]
def peek(self, figsize=(12, 8)):
"""Quick-look summary plots.
Parameters
----------
figsize : tuple
Size of the figure. Default is (12, 10).
"""
def plot_mask(ax, mask, **kwargs):
if mask is not None:
mask.plot_mask(ax=ax, **kwargs)
fig, axes = plt.subplots(
ncols=2,
nrows=2,
subplot_kw={"projection": self._geom.wcs},
figsize=figsize,
gridspec_kw={"hspace": 0.25, "wspace": 0.1},
)
axes = axes.flat
axes[0].set_title("Counts")
self.counts.sum_over_axes().plot(ax=axes[0], add_cbar=True)
plot_mask(ax=axes[0], mask=self.mask_fit_image, alpha=0.2)
plot_mask(ax=axes[0], mask=self.mask_safe_image, hatches=["///"], colors="w")
axes[1].set_title("Excess counts")
self.excess.sum_over_axes().plot(ax=axes[1], add_cbar=True)
plot_mask(ax=axes[1], mask=self.mask_fit_image, alpha=0.2)
plot_mask(ax=axes[1], mask=self.mask_safe_image, hatches=["///"], colors="w")
axes[2].set_title("Exposure")
self.exposure.sum_over_axes().plot(ax=axes[2], add_cbar=True)
plot_mask(ax=axes[2], mask=self.mask_safe_image, hatches=["///"], colors="w")
axes[3].set_title("Background")
self.background.sum_over_axes().plot(ax=axes[3], add_cbar=True)
plot_mask(ax=axes[3], mask=self.mask_fit_image, alpha=0.2)
plot_mask(ax=axes[3], mask=self.mask_safe_image, hatches=["///"], colors="w")
[docs]
class MapDatasetOnOff(MapDataset):
"""Map dataset for on-off likelihood fitting.
It bundles together the binned on and off counts, the binned IRFs as well as the on and off acceptances.
A safe mask and a fit mask can be added to exclude bins during the analysis.
It uses the Wstat statistic (see `~gammapy.stats.wstat`), therefore no background model is needed.
For more information see :ref:`datasets`.
Parameters
----------
models : `~gammapy.modeling.models.Models`
Source sky models.
counts : `~gammapy.maps.WcsNDMap`
Counts cube.
counts_off : `~gammapy.maps.WcsNDMap`
Ring-convolved counts cube.
acceptance : `~gammapy.maps.WcsNDMap`
Acceptance from the IRFs.
acceptance_off : `~gammapy.maps.WcsNDMap`
Acceptance off.
exposure : `~gammapy.maps.WcsNDMap`
Exposure cube.
mask_fit : `~gammapy.maps.WcsNDMap`
Mask to apply to the likelihood for fitting.
psf : `~gammapy.irf.PSFKernel`
PSF kernel.
edisp : `~gammapy.irf.EDispKernel`
Energy dispersion.
mask_safe : `~gammapy.maps.WcsNDMap`
Mask defining the safe data range.
gti : `~gammapy.data.GTI`
GTI of the observation or union of GTI if it is a stacked observation.
meta_table : `~astropy.table.Table`
Table listing information on observations used to create the dataset.
One line per observation for stacked datasets.
name : str
Name of the dataset.
meta : `~gammapy.datasets.MapDatasetMetaData`
Associated meta data container
See Also
--------
MapDataset, SpectrumDataset, FluxPointsDataset.
"""
stat_type = "wstat"
tag = "MapDatasetOnOff"
def __init__(
self,
models=None,
counts=None,
counts_off=None,
acceptance=None,
acceptance_off=None,
exposure=None,
mask_fit=None,
psf=None,
edisp=None,
name=None,
mask_safe=None,
gti=None,
meta_table=None,
meta=None,
):
self._name = make_name(name)
self._evaluators = {}
self.counts = counts
self.counts_off = counts_off
self.exposure = exposure
self.acceptance = acceptance
self.acceptance_off = acceptance_off
self.gti = gti
self.mask_fit = mask_fit
self.psf = psf
self.edisp = edisp
self.models = models
self.mask_safe = mask_safe
self.meta_table = meta_table
if meta is None:
self._meta = MapDatasetMetaData()
else:
self._meta = meta
def __str__(self):
str_ = super().__str__()
if self.mask_safe:
mask = self.mask_safe.data.astype(bool)
else:
mask = slice(None)
counts_off = np.nan
if self.counts_off is not None:
counts_off = np.sum(self.counts_off.data[mask])
str_ += "\t{:32}: {:.0f} \n".format("Total counts_off", counts_off)
acceptance = np.nan
if self.acceptance is not None:
acceptance = np.sum(self.acceptance.data[mask])
str_ += "\t{:32}: {:.0f} \n".format("Acceptance", acceptance)
acceptance_off = np.nan
if self.acceptance_off is not None:
acceptance_off = np.sum(self.acceptance_off.data[mask])
str_ += "\t{:32}: {:.0f} \n".format("Acceptance off", acceptance_off)
return str_.expandtabs(tabsize=2)
@property
def _geom(self):
"""Main analysis geometry."""
if self.counts is not None:
return self.counts.geom
elif self.counts_off is not None:
return self.counts_off.geom
elif self.acceptance is not None:
return self.acceptance.geom
elif self.acceptance_off is not None:
return self.acceptance_off.geom
else:
raise ValueError(
"Either 'counts', 'counts_off', 'acceptance' or 'acceptance_of' must be defined."
)
@property
def alpha(self):
"""Exposure ratio between signal and background regions.
See :ref:`wstat`.
Returns
-------
alpha : `Map`
Alpha map.
"""
with np.errstate(invalid="ignore", divide="ignore"):
data = self.acceptance.quantity / self.acceptance_off.quantity
data = np.nan_to_num(data)
return Map.from_geom(self._geom, data=data.to_value(""), unit="")
[docs]
def npred_background(self):
"""Predicted background counts estimated from the marginalized likelihood estimate.
See :ref:`wstat`.
Returns
-------
npred_background : `Map`
Predicted background counts.
"""
mu_bkg = self.alpha.data * get_wstat_mu_bkg(
n_on=self.counts.data,
n_off=self.counts_off.data,
alpha=self.alpha.data,
mu_sig=self.npred_signal().data,
)
mu_bkg = np.nan_to_num(mu_bkg)
return Map.from_geom(geom=self._geom, data=mu_bkg)
[docs]
def npred_off(self):
"""Predicted counts in the off region; mu_bkg/alpha.
See :ref:`wstat`.
Returns
-------
npred_off : `Map`
Predicted off counts.
"""
return self.npred_background() / self.alpha
@property
def background(self):
"""Computed as alpha * n_off.
See :ref:`wstat`.
Returns
-------
background : `Map`
Background map.
"""
if self.counts_off is None:
return None
return self.alpha * self.counts_off
[docs]
def stat_array(self):
"""Statistic function value per bin given the current model parameters."""
mu_sig = self.npred_signal().data
on_stat_ = wstat(
n_on=self.counts.data,
n_off=self.counts_off.data,
alpha=list(self.alpha.data),
mu_sig=mu_sig,
)
return np.nan_to_num(on_stat_)
@property
def _counts_statistic(self):
"""Counts statistics of the dataset."""
return WStatCountsStatistic(self.counts, self.counts_off, self.alpha)
[docs]
@classmethod
def from_geoms(
cls,
geom,
geom_exposure=None,
geom_psf=None,
geom_edisp=None,
reference_time="2000-01-01",
name=None,
**kwargs,
):
"""Create an empty `MapDatasetOnOff` object according to the specified geometries.
Parameters
----------
geom : `gammapy.maps.WcsGeom`
Geometry for the counts, counts_off, acceptance and acceptance_off maps.
geom_exposure : `gammapy.maps.WcsGeom`, optional
Geometry for the exposure map. Default is None.
geom_psf : `gammapy.maps.WcsGeom`, optional
Geometry for the PSF map. Default is None.
geom_edisp : `gammapy.maps.WcsGeom`, optional
Geometry for the energy dispersion kernel map.
If geom_edisp has a migra axis, this will create an EDispMap instead. Default is None.
reference_time : `~astropy.time.Time`
The reference time to use in GTI definition. Default is "2000-01-01".
name : str, optional
Name of the returned dataset. Default is None.
**kwargs : dict, optional
Keyword arguments to be passed.
Returns
-------
empty_maps : `MapDatasetOnOff`
A MapDatasetOnOff containing zero filled maps.
"""
# TODO: it seems the super() pattern does not work here?
dataset = MapDataset.from_geoms(
geom=geom,
geom_exposure=geom_exposure,
geom_psf=geom_psf,
geom_edisp=geom_edisp,
name=name,
reference_time=reference_time,
**kwargs,
)
off_maps = {}
for key in ["counts_off", "acceptance", "acceptance_off"]:
off_maps[key] = Map.from_geom(geom, unit="")
return cls.from_map_dataset(dataset, name=name, **off_maps)
[docs]
@classmethod
def from_map_dataset(
cls, dataset, acceptance, acceptance_off, counts_off=None, name=None
):
"""Create on off dataset from a map dataset.
Parameters
----------
dataset : `MapDataset`
Spectrum dataset defining counts, edisp, aeff, livetime etc.
acceptance : `Map`
Relative background efficiency in the on region.
acceptance_off : `Map`
Relative background efficiency in the off region.
counts_off : `Map`, optional
Off counts map . If the dataset provides a background model,
and no off counts are defined. The off counts are deferred from
counts_off / alpha. Default is None.
name : str, optional
Name of the returned dataset. Default is None.
Returns
-------
dataset : `MapDatasetOnOff`
Map dataset on off.
"""
if counts_off is None and dataset.background is not None:
alpha = acceptance / acceptance_off
counts_off = dataset.npred_background() / alpha
if np.isscalar(acceptance):
acceptance = Map.from_geom(dataset._geom, data=acceptance)
if np.isscalar(acceptance_off):
acceptance_off = Map.from_geom(dataset._geom, data=acceptance_off)
return cls(
models=dataset.models,
counts=dataset.counts,
exposure=dataset.exposure,
counts_off=counts_off,
edisp=dataset.edisp,
psf=dataset.psf,
mask_safe=dataset.mask_safe,
mask_fit=dataset.mask_fit,
acceptance=acceptance,
acceptance_off=acceptance_off,
gti=dataset.gti,
name=name,
meta_table=dataset.meta_table,
)
[docs]
def to_map_dataset(self, name=None):
"""Convert a MapDatasetOnOff to a MapDataset.
The background model template is taken as alpha * counts_off.
Parameters
----------
name : str, optional
Name of the new dataset. Default is None.
Returns
-------
dataset : `MapDataset`
Map dataset with cash statistics.
"""
name = make_name(name)
background = self.counts_off * self.alpha if self.counts_off else None
return MapDataset(
counts=self.counts,
exposure=self.exposure,
psf=self.psf,
edisp=self.edisp,
name=name,
gti=self.gti,
mask_fit=self.mask_fit,
mask_safe=self.mask_safe,
background=background,
meta_table=self.meta_table,
)
@property
def _is_stackable(self):
"""Check if the Dataset contains enough information to be stacked."""
incomplete = (
self.acceptance_off is None
or self.acceptance is None
or self.counts_off is None
)
unmasked = np.any(self.mask_safe.data)
if incomplete and unmasked:
return False
else:
return True
[docs]
def stack(self, other, nan_to_num=True):
r"""Stack another dataset in place.
Safe mask is applied to the other dataset to compute the stacked counts data,
counts outside the safe mask are lost (as for `~gammapy.MapDataset.stack`).
The ``acceptance`` of the stacked dataset is obtained by stacking the acceptance weighted
by the other mask_safe onto the current unweighted acceptance.
Note that the masking is not applied to the current dataset. If masking needs
to be applied to it, use `~gammapy.MapDataset.to_masked()` first.
The stacked ``acceptance_off`` is scaled so that:
.. math::
\alpha_\text{stacked} =
\frac{1}{a_\text{off}} =
\frac{\alpha_1\text{OFF}_1 + \alpha_2\text{OFF}_2}{\text{OFF}_1 + OFF_2}.
For details, see :ref:`stack`.
Parameters
----------
other : `MapDatasetOnOff`
Other dataset.
nan_to_num : bool
Non-finite values are replaced by zero if True. Default is True.
"""
if not isinstance(other, MapDatasetOnOff):
raise TypeError("Incompatible types for MapDatasetOnOff stacking")
if not self._is_stackable or not other._is_stackable:
raise ValueError("Cannot stack incomplete MapDatasetOnOff.")
geom = self.counts.geom
total_off = Map.from_geom(geom)
total_alpha = Map.from_geom(geom)
total_acceptance = Map.from_geom(geom)
total_acceptance.stack(self.acceptance, nan_to_num=nan_to_num)
total_acceptance.stack(
other.acceptance, weights=other.mask_safe, nan_to_num=nan_to_num
)
if self.counts_off:
total_off.stack(self.counts_off, nan_to_num=nan_to_num)
total_alpha.stack(self.alpha * self.counts_off, nan_to_num=nan_to_num)
if other.counts_off:
total_off.stack(
other.counts_off, weights=other.mask_safe, nan_to_num=nan_to_num
)
total_alpha.stack(
other.alpha * other.counts_off,
weights=other.mask_safe,
nan_to_num=nan_to_num,
)
with np.errstate(divide="ignore", invalid="ignore"):
acceptance_off = total_acceptance * total_off / total_alpha
average_alpha = total_alpha.data.sum() / total_off.data.sum()
# For the bins where the stacked OFF counts equal 0, the alpha value is
# performed by weighting on the total OFF counts of each run
is_zero = total_off.data == 0
acceptance_off.data[is_zero] = total_acceptance.data[is_zero] / average_alpha
self.acceptance.data[...] = total_acceptance.data
self.acceptance_off = acceptance_off
self.counts_off = total_off
super().stack(other, nan_to_num=nan_to_num)
[docs]
def stat_sum(self):
"""Total statistic function value given the current model parameters.
If the off counts are passed as None and the elements of the safe mask are False, zero will be returned.
Otherwise, the stat sum will be calculated and returned.
"""
if self.counts_off is None and not np.any(self.mask_safe.data):
return 0
else:
return Dataset.stat_sum(self)
[docs]
def fake(self, npred_background, random_state="random-seed"):
"""Simulate fake counts (on and off) for the current model and reduced IRFs.
This method overwrites the counts defined on the dataset object.
Parameters
----------
npred_background : `~gammapy.maps.Map`
Expected number of background counts in the on region.
random_state : {int, 'random-seed', 'global-rng', `~numpy.random.RandomState`}
Defines random number generator initialisation.
Passed to `~gammapy.utils.random.get_random_state`. Default is "random-seed".
"""
random_state = get_random_state(random_state)
npred = self.npred_signal()
data = np.nan_to_num(npred.data, copy=True, nan=0.0, posinf=0.0, neginf=0.0)
npred.data = random_state.poisson(data)
npred_bkg = random_state.poisson(npred_background.data)
self.counts = npred + npred_bkg
npred_off = npred_background / self.alpha
data_off = np.nan_to_num(
npred_off.data, copy=True, nan=0.0, posinf=0.0, neginf=0.0
)
npred_off.data = random_state.poisson(data_off)
self.counts_off = npred_off
[docs]
def to_hdulist(self):
"""Convert map dataset to list of HDUs.
Returns
-------
hdulist : `~astropy.io.fits.HDUList`
Map dataset list of HDUs.
"""
hdulist = super().to_hdulist()
exclude_primary = slice(1, None)
del hdulist["BACKGROUND"]
del hdulist["BACKGROUND_BANDS"]
if self.counts_off is not None:
hdulist += self.counts_off.to_hdulist(hdu="counts_off")[exclude_primary]
if self.acceptance is not None:
hdulist += self.acceptance.to_hdulist(hdu="acceptance")[exclude_primary]
if self.acceptance_off is not None:
hdulist += self.acceptance_off.to_hdulist(hdu="acceptance_off")[
exclude_primary
]
return hdulist
@classmethod
def _read_lazy(cls, filename, name=None, cache=True, format="gadf"):
raise NotImplementedError(
f"Lazy loading is not implemented for {cls}, please use option lazy=False."
)
[docs]
@classmethod
def from_hdulist(cls, hdulist, name=None, format="gadf"):
"""Create map dataset from list of HDUs.
Parameters
----------
hdulist : `~astropy.io.fits.HDUList`
List of HDUs.
name : str, optional
Name of the new dataset. Default is None.
format : {"gadf"}
Format the hdulist is given in. Default is "gadf".
Returns
-------
dataset : `MapDatasetOnOff`
Map dataset.
"""
kwargs = {}
kwargs["name"] = name
if "COUNTS" in hdulist:
kwargs["counts"] = Map.from_hdulist(hdulist, hdu="counts", format=format)
if "COUNTS_OFF" in hdulist:
kwargs["counts_off"] = Map.from_hdulist(
hdulist, hdu="counts_off", format=format
)
if "ACCEPTANCE" in hdulist:
kwargs["acceptance"] = Map.from_hdulist(
hdulist, hdu="acceptance", format=format
)
if "ACCEPTANCE_OFF" in hdulist:
kwargs["acceptance_off"] = Map.from_hdulist(
hdulist, hdu="acceptance_off", format=format
)
if "EXPOSURE" in hdulist:
kwargs["exposure"] = Map.from_hdulist(
hdulist, hdu="exposure", format=format
)
if "EDISP" in hdulist:
edisp_map = Map.from_hdulist(hdulist, hdu="edisp", format=format)
try:
exposure_map = Map.from_hdulist(
hdulist, hdu="edisp_exposure", format=format
)
except KeyError:
exposure_map = None
if edisp_map.geom.axes[0].name == "energy":
kwargs["edisp"] = EDispKernelMap(edisp_map, exposure_map)
else:
kwargs["edisp"] = EDispMap(edisp_map, exposure_map)
if "PSF" in hdulist:
psf_map = Map.from_hdulist(hdulist, hdu="psf", format=format)
try:
exposure_map = Map.from_hdulist(
hdulist, hdu="psf_exposure", format=format
)
except KeyError:
exposure_map = None
kwargs["psf"] = PSFMap(psf_map, exposure_map)
if "MASK_SAFE" in hdulist:
mask_safe = Map.from_hdulist(hdulist, hdu="mask_safe", format=format)
kwargs["mask_safe"] = mask_safe
if "MASK_FIT" in hdulist:
mask_fit = Map.from_hdulist(hdulist, hdu="mask_fit", format=format)
kwargs["mask_fit"] = mask_fit
if "GTI" in hdulist:
gti = GTI.from_table_hdu(hdulist["GTI"])
kwargs["gti"] = gti
if "META_TABLE" in hdulist:
meta_table = Table.read(hdulist, hdu="META_TABLE")
kwargs["meta_table"] = meta_table
return cls(**kwargs)
[docs]
def info_dict(self, in_safe_data_range=True):
"""Basic info dict with summary statistics.
If a region is passed, then a spectrum dataset is
extracted, and the corresponding info returned.
Parameters
----------
in_safe_data_range : bool
Whether to sum only in the safe energy range. Default is True.
Returns
-------
info_dict : dict
Dictionary with summary info.
"""
# TODO: remove code duplication with SpectrumDatasetOnOff
info = super().info_dict(in_safe_data_range)
if self.mask_safe and in_safe_data_range:
mask = self.mask_safe.data.astype(bool)
else:
mask = slice(None)
summed_stat = self._counts_statistic[mask].sum()
counts_off = 0
if self.counts_off is not None:
counts_off = summed_stat.n_off
info["counts_off"] = int(counts_off)
acceptance = 1
if self.acceptance:
acceptance = self.acceptance.data[mask].sum()
info["acceptance"] = float(acceptance)
acceptance_off = np.nan
alpha = np.nan
if self.acceptance_off:
alpha = summed_stat.alpha
acceptance_off = acceptance / alpha
info["acceptance_off"] = float(acceptance_off)
info["alpha"] = float(alpha)
info["stat_sum"] = self.stat_sum()
return info
[docs]
def to_spectrum_dataset(self, on_region, containment_correction=False, name=None):
"""Return a ~gammapy.datasets.SpectrumDatasetOnOff from on_region.
Counts and OFF counts are summed in the on_region.
Acceptance is the average of all acceptances while acceptance OFF
is taken such that number of excess is preserved in the on_region.
Effective area is taken from the average exposure.
The energy dispersion kernel is obtained at the on_region center.
Only regions with centers are supported.
The models are not exported to the ~gammapy.dataset.SpectrumDatasetOnOff.
It must be set after the dataset extraction.
Parameters
----------
on_region : `~regions.SkyRegion`
The input ON region on which to extract the spectrum.
containment_correction : bool
Apply containment correction for point sources and circular on regions. Default is False.
name : str, optional
Name of the new dataset. Default is None.
Returns
-------
dataset : `~gammapy.datasets.SpectrumDatasetOnOff`
The resulting reduced dataset.
"""
from .spectrum import SpectrumDatasetOnOff
dataset = super().to_spectrum_dataset(
on_region=on_region,
containment_correction=containment_correction,
name=name,
)
kwargs = {"name": name}
if self.counts_off is not None:
kwargs["counts_off"] = self.counts_off.get_spectrum(
on_region, np.sum, weights=self.mask_safe
)
if self.acceptance is not None:
kwargs["acceptance"] = self.acceptance.get_spectrum(
on_region, np.mean, weights=self.mask_safe
)
norm = self.background.get_spectrum(
on_region, np.sum, weights=self.mask_safe
)
acceptance_off = kwargs["acceptance"] * kwargs["counts_off"] / norm
np.nan_to_num(acceptance_off.data, copy=False)
kwargs["acceptance_off"] = acceptance_off
return SpectrumDatasetOnOff.from_spectrum_dataset(dataset=dataset, **kwargs)
[docs]
def cutout(self, position, width, mode="trim", name=None):
"""Cutout map dataset.
Parameters
----------
position : `~astropy.coordinates.SkyCoord`
Center position of the cutout region.
width : tuple of `~astropy.coordinates.Angle`
Angular sizes of the region in (lon, lat) in that specific order.
If only one value is passed, a square region is extracted.
mode : {'trim', 'partial', 'strict'}
Mode option for Cutout2D, for details see `~astropy.nddata.utils.Cutout2D`. Default is "trim".
name : str, optional
Name of the new dataset. Default is None.
Returns
-------
cutout : `MapDatasetOnOff`
Cutout map dataset.
"""
cutout_kwargs = {
"position": position,
"width": width,
"mode": mode,
"name": name,
}
cutout_dataset = super().cutout(**cutout_kwargs)
del cutout_kwargs["name"]
if self.counts_off is not None:
cutout_dataset.counts_off = self.counts_off.cutout(**cutout_kwargs)
if self.acceptance is not None:
cutout_dataset.acceptance = self.acceptance.cutout(**cutout_kwargs)
if self.acceptance_off is not None:
cutout_dataset.acceptance_off = self.acceptance_off.cutout(**cutout_kwargs)
return cutout_dataset
[docs]
def downsample(self, factor, axis_name=None, name=None):
"""Downsample map dataset.
The PSFMap and EDispKernelMap are not downsampled, except if
a corresponding axis is given.
Parameters
----------
factor : int
Downsampling factor.
axis_name : str, optional
Which non-spatial axis to downsample. By default, only spatial axes are downsampled. Default is None.
name : str, optional
Name of the downsampled dataset. Default is None.
Returns
-------
dataset : `MapDatasetOnOff`
Downsampled map dataset.
"""
dataset = super().downsample(factor, axis_name, name)
counts_off = None
if self.counts_off is not None:
counts_off = self.counts_off.downsample(
factor=factor,
preserve_counts=True,
axis_name=axis_name,
weights=self.mask_safe,
)
acceptance, acceptance_off = None, None
if self.acceptance_off is not None:
acceptance = self.acceptance.downsample(
factor=factor, preserve_counts=False, axis_name=axis_name
)
factor = self.background.downsample(
factor=factor,
preserve_counts=True,
axis_name=axis_name,
weights=self.mask_safe,
)
acceptance_off = acceptance * counts_off / factor
return self.__class__.from_map_dataset(
dataset,
acceptance=acceptance,
acceptance_off=acceptance_off,
counts_off=counts_off,
)
[docs]
def pad(self):
"""Not implemented for MapDatasetOnOff."""
raise NotImplementedError
[docs]
def slice_by_idx(self, slices, name=None):
"""Slice sub dataset.
The slicing only applies to the maps that define the corresponding axes.
Parameters
----------
slices : dict
Dictionary of axes names and integers or `slice` object pairs. Contains one
element for each non-spatial dimension. For integer indexing the
corresponding axes is dropped from the map. Axes not specified in the
dict are kept unchanged.
name : str, optional
Name of the sliced dataset. Default is None.
Returns
-------
map_out : `Map`
Sliced map object.
"""
kwargs = {"name": name}
dataset = super().slice_by_idx(slices, name)
if self.counts_off is not None:
kwargs["counts_off"] = self.counts_off.slice_by_idx(slices=slices)
if self.acceptance is not None:
kwargs["acceptance"] = self.acceptance.slice_by_idx(slices=slices)
if self.acceptance_off is not None:
kwargs["acceptance_off"] = self.acceptance_off.slice_by_idx(slices=slices)
return self.from_map_dataset(dataset, **kwargs)
[docs]
def resample_energy_axis(self, energy_axis, name=None):
"""Resample MapDatasetOnOff over reconstructed energy edges.
Counts are summed taking into account safe mask.
Parameters
----------
energy_axis : `~gammapy.maps.MapAxis`
New reco energy axis.
name : str, optional
Name of the new dataset. Default is None.
Returns
-------
dataset : `SpectrumDataset`
Resampled spectrum dataset.
"""
dataset = super().resample_energy_axis(energy_axis, name)
counts_off = None
if self.counts_off is not None:
counts_off = self.counts_off
counts_off = counts_off.resample_axis(
axis=energy_axis, weights=self.mask_safe
)
acceptance = 1
acceptance_off = None
if self.acceptance is not None:
acceptance = self.acceptance
acceptance = acceptance.resample_axis(
axis=energy_axis, weights=self.mask_safe
)
norm_factor = self.background.resample_axis(
axis=energy_axis, weights=self.mask_safe
)
acceptance_off = acceptance * counts_off / norm_factor
return self.__class__.from_map_dataset(
dataset,
acceptance=acceptance,
acceptance_off=acceptance_off,
counts_off=counts_off,
name=name,
)