Source code for gammapy.estimators.core
# Licensed under a 3-clause BSD style license - see LICENSE.rst
import abc
import html
import inspect
from copy import deepcopy
import numpy as np
from astropy import units as u
from gammapy.maps import MapAxis
from gammapy.modeling.models import ModelBase
__all__ = ["Estimator"]
[docs]
class Estimator(abc.ABC):
"""Abstract estimator base class."""
_available_selection_optional = {}
@property
@abc.abstractmethod
def tag(self):
pass
[docs]
@abc.abstractmethod
def run(self, datasets):
pass
@property
def selection_optional(self):
""""""
return self._selection_optional
@selection_optional.setter
def selection_optional(self, selection):
"""Set optional selection."""
available = self._available_selection_optional
if selection is None:
self._selection_optional = []
elif "all" in selection:
self._selection_optional = available
else:
if set(selection).issubset(set(available)):
self._selection_optional = selection
else:
difference = set(selection).difference(set(available))
raise ValueError(f"{difference} is not a valid method.")
def _get_energy_axis(self, dataset):
"""Energy axis."""
if self.energy_edges is None:
energy_axis = dataset.counts.geom.axes["energy"].squash()
if getattr(self, "sum_over_energy_groups", False):
energy_edges = [energy_axis.edges[0], energy_axis.edges[1]]
energy_axis = MapAxis.from_energy_edges(energy_edges)
else:
energy_axis = MapAxis.from_energy_edges(self.energy_edges)
return energy_axis
[docs]
def copy(self):
"""Copy estimator."""
return deepcopy(self)
@property
def config_parameters(self):
"""Configuration parameters."""
pars = self.__dict__.copy()
pars = {key.strip("_"): value for key, value in pars.items()}
return pars
def __str__(self):
s = f"{self.__class__.__name__}\n"
s += "-" * (len(s) - 1) + "\n\n"
pars = self.config_parameters
max_len = np.max([len(_) for _ in pars]) + 1
for name, value in sorted(pars.items()):
if isinstance(value, ModelBase):
s += f"\t{name:{max_len}s}: {value.tag[0]}\n"
elif inspect.isclass(value):
s += f"\t{name:{max_len}s}: {value.__name__}\n"
elif isinstance(value, u.Quantity):
s += f"\t{name:{max_len}s}: {value}\n"
elif isinstance(value, Estimator):
pass
elif isinstance(value, np.ndarray):
value = np.array_str(value, precision=2, suppress_small=True)
s += f"\t{name:{max_len}s}: {value}\n"
else:
s += f"\t{name:{max_len}s}: {value}\n"
return s.expandtabs(tabsize=2)
def _repr_html_(self):
try:
return self.to_html()
except AttributeError:
return f"<pre>{html.escape(str(self))}</pre>"