Source code for gammapy.irf.core

# Licensed under a 3-clause BSD style license - see LICENSE.rst
import abc
import html
import logging
from copy import deepcopy
from enum import Enum
import numpy as np
from astropy import units as u
from astropy.io import fits
from astropy.table import Table
from astropy.utils import lazyproperty
from gammapy.maps import Map, MapAxes, MapAxis, RegionGeom
from gammapy.utils.compat import COPY_IF_NEEDED
from gammapy.utils.integrate import trapz_loglog
from gammapy.utils.interpolation import (
    ScaledRegularGridInterpolator,
    interpolation_scale,
)
from gammapy.utils.scripts import make_path
from .io import IRF_DL3_HDU_SPECIFICATION, IRF_MAP_HDU_SPECIFICATION, gadf_is_pointlike

log = logging.getLogger(__name__)


[docs] class FoVAlignment(str, Enum): """ Orientation of the Field of View Coordinate System. Currently, only two possible alignments are supported: alignment with the horizontal coordinate system (ALTAZ) and alignment with the equatorial coordinate system (RADEC). """ ALTAZ = "ALTAZ" RADEC = "RADEC"
[docs] class IRF(metaclass=abc.ABCMeta): """IRF base class for DL3 instrument response functions. Parameters ---------- axes : list of `MapAxis` or `MapAxes` Axes. data : `~numpy.ndarray` or `~astropy.units.Quantity`, optional Data. Default is 0. unit : str or `~astropy.units.Unit`, optional Unit, ignored if data is a Quantity. Default is "". is_pointlike : bool, optional Whether the IRF is point-like. True for point-like IRFs, False for full-enclosure. Default is False. fov_alignment : `FoVAlignment`, optional The orientation of the field of view coordinate system. Default is FoVAlignment.RADEC. meta : dict, optional Metadata dictionary. Default is None. """ default_interp_kwargs = dict( bounds_error=False, fill_value=0.0, ) def __init__( self, axes, data=0, unit="", is_pointlike=False, fov_alignment=FoVAlignment.RADEC, meta=None, interp_kwargs=None, ): axes = MapAxes(axes) axes.assert_names(self.required_axes) self._axes = axes self._fov_alignment = FoVAlignment(fov_alignment) self._is_pointlike = is_pointlike if isinstance(data, u.Quantity): self.data = data.value if not self.default_unit.is_equivalent(data.unit): raise ValueError( f"Error: {data.unit} is not an allowed unit. {self.tag} " f"requires {self.default_unit} data quantities." ) else: self._unit = data.unit else: self.data = data self._unit = unit self.meta = meta or {} if interp_kwargs is None: interp_kwargs = self.default_interp_kwargs.copy() self.interp_kwargs = interp_kwargs @property @abc.abstractmethod def tag(self): pass @property @abc.abstractmethod def required_axes(self): pass @property def is_pointlike(self): """Whether the IRF is pointlike of full containment.""" return self._is_pointlike @property def has_offset_axis(self): """Whether the IRF explicitly depends on offset.""" return "offset" in self.required_axes @property def fov_alignment(self): """Alignment of the field of view coordinate axes, see `FoVAlignment`.""" return self._fov_alignment @property def data(self): return self._data @data.setter def data(self, value): """Set data. Parameters ---------- value : `~numpy.ndarray` Data array. """ required_shape = self.axes.shape if np.isscalar(value): value = value * np.ones(required_shape) if isinstance(value, u.Quantity): raise TypeError("Map data must be a Numpy array. Set unit separately") if np.shape(value) != required_shape: raise ValueError( f"data shape {value.shape} does not match" f"axes shape {required_shape}" ) self._data = value # reset cached interpolators self.__dict__.pop("_interpolate", None) self.__dict__.pop("_integrate_rad", None)
[docs] def interp_missing_data(self, axis_name): """Interpolate missing data along a given axis.""" data = self.data.copy() values_scale = self.interp_kwargs.get("values_scale", "lin") scale = interpolation_scale(values_scale) axis = self.axes.index(axis_name) mask = ~np.isfinite(data) | (data == 0.0) coords = np.where(mask) xp = np.arange(data.shape[axis]) for coord in zip(*coords): idx = list(coord) idx[axis] = slice(None) fp = data[tuple(idx)] valid = ~mask[tuple(idx)] if np.any(valid): value = np.interp( x=coord[axis], xp=xp[valid], fp=scale(fp[valid]), left=np.nan, right=np.nan, ) if not np.isnan(value): data[coord] = scale.inverse(value) self.data = data # reset cached values
@property def unit(self): """Map unit as a `~astropy.units.Unit` object.""" return self._unit @lazyproperty def _interpolate(self): kwargs = self.interp_kwargs.copy() # Allow extrapolation with in bins kwargs["fill_value"] = None points = [a.center for a in self.axes] points_scale = tuple([a.interp for a in self.axes]) return ScaledRegularGridInterpolator( points, self.quantity, points_scale=points_scale, **kwargs, ) @property def quantity(self): """Quantity as a `~astropy.units.Quantity` object.""" return u.Quantity(self.data, unit=self.unit, copy=COPY_IF_NEEDED) @quantity.setter def quantity(self, val): """Set data and unit. Parameters ---------- value : `~astropy.units.Quantity` Quantity. """ val = u.Quantity(val, copy=COPY_IF_NEEDED) self.data = val.value self._unit = val.unit
[docs] def to_unit(self, unit): """Convert IRF to different unit. Parameters ---------- unit : `~astropy.unit.Unit` or str New unit. Returns ------- irf : `IRF` IRF with new unit and converted data. """ data = self.quantity.to_value(unit) return self.__class__( self.axes, data=data, meta=self.meta, interp_kwargs=self.interp_kwargs )
@property def axes(self): """`MapAxes`.""" return self._axes def __str__(self): str_ = f"{self.__class__.__name__}\n" str_ += "-" * len(self.__class__.__name__) + "\n\n" str_ += f"\taxes : {self.axes.names}\n" str_ += f"\tshape : {self.data.shape}\n" str_ += f"\tndim : {len(self.axes)}\n" str_ += f"\tunit : {self.unit}\n" str_ += f"\tdtype : {self.data.dtype}\n" return str_.expandtabs(tabsize=2) def _repr_html_(self): try: return self.to_html() except AttributeError: return f"<pre>{html.escape(str(self))}</pre>"
[docs] def evaluate(self, method=None, **kwargs): """Evaluate IRF. Parameters ---------- **kwargs : dict Coordinates at which to evaluate the IRF. method : str {'linear', 'nearest'}, optional Interpolation method. Returns ------- array : `~astropy.units.Quantity` Interpolated values. """ # TODO: change to coord dict? non_valid_axis = set(kwargs).difference(self.axes.names) if non_valid_axis: raise ValueError( f"Not a valid coordinate axis {non_valid_axis}" f" Choose from: {self.axes.names}" ) coords_default = self.axes.get_coord() for key, value in kwargs.items(): coord = kwargs.get(key, value) if coord is not None: coords_default[key] = u.Quantity(coord, copy=COPY_IF_NEEDED) data = self._interpolate(coords_default.values(), method=method) if self.interp_kwargs["fill_value"] is not None: idxs = self.axes.coord_to_idx(coords_default, clip=False) invalid = np.broadcast_arrays(*[idx == -1 for idx in idxs]) mask = self._mask_out_bounds(invalid) if not data.shape: mask = mask.squeeze() data[mask] = self.interp_kwargs["fill_value"] data[~np.isfinite(data)] = self.interp_kwargs["fill_value"] return data
@staticmethod def _mask_out_bounds(invalid): return np.any(invalid, axis=0)
[docs] def integrate_log_log(self, axis_name, **kwargs): """Integrate along a given axis. This method uses log-log trapezoidal integration. Parameters ---------- axis_name : str Along which axis to integrate. **kwargs : dict Coordinates at which to evaluate the IRF. Returns ------- array : `~astropy.units.Quantity` Returns 2D array with axes offset. """ axis = self.axes.index(axis_name) data = self.evaluate(**kwargs, method="linear") values = kwargs[axis_name] return trapz_loglog(data, values, axis=axis)
[docs] def cumsum(self, axis_name): """Compute cumsum along a given axis. Parameters ---------- axis_name : str Along which axis to integrate. Returns ------- irf : `~IRF` Cumsum IRF. """ axis = self.axes[axis_name] axis_idx = self.axes.index(axis_name) shape = [1] * len(self.axes) shape[axis_idx] = -1 values = self.quantity * axis.bin_width.reshape(shape) if axis_name in ["rad", "offset"]: # take Jacobian into account values = 2 * np.pi * axis.center.reshape(shape) * values data = values.cumsum(axis=axis_idx) axis_shifted = MapAxis.from_nodes( axis.edges[1:], name=axis.name, interp=axis.interp ) axes = self.axes.replace(axis_shifted) return self.__class__(axes=axes, data=data.value, unit=data.unit)
[docs] def integral(self, axis_name, **kwargs): """Compute integral along a given axis. This method uses interpolation of the cumulative sum. Parameters ---------- axis_name : str Along which axis to integrate. **kwargs : dict Coordinates at which to evaluate the IRF. Returns ------- array : `~astropy.units.Quantity` Returns 2D array with axes offset. """ cumsum = self.cumsum(axis_name=axis_name) return cumsum.evaluate(**kwargs)
[docs] def normalize(self, axis_name): """Normalise data in place along a given axis. Parameters ---------- axis_name : str Along which axis to normalize. """ cumsum = self.cumsum(axis_name=axis_name).quantity with np.errstate(invalid="ignore", divide="ignore"): axis = self.axes.index(axis_name=axis_name) normed = self.quantity / cumsum.max(axis=axis, keepdims=True) self.quantity = np.nan_to_num(normed)
[docs] @classmethod def from_hdulist(cls, hdulist, hdu=None, format="gadf-dl3"): """Create from `~astropy.io.fits.HDUList`. Parameters ---------- hdulist : `~astropy.io.HDUList` HDU list. hdu : str HDU name. format : {"gadf-dl3"} Format specification. Default is "gadf-dl3". Returns ------- irf : `IRF` IRF class. """ if hdu is None: hdu = IRF_DL3_HDU_SPECIFICATION[cls.tag]["extname"] return cls.from_table(Table.read(hdulist[hdu]), format=format)
[docs] @classmethod def read(cls, filename, hdu=None, format="gadf-dl3"): """Read from file. Parameters ---------- filename : str or `~pathlib.Path` Filename. hdu : str HDU name. format : {"gadf-dl3"}, optional Format specification. Default is "gadf-dl3". Returns ------- irf : `IRF` IRF class. """ with fits.open(str(make_path(filename)), memmap=False) as hdulist: return cls.from_hdulist(hdulist, hdu=hdu)
[docs] @classmethod def from_table(cls, table, format="gadf-dl3"): """Read from `~astropy.table.Table`. Parameters ---------- table : `~astropy.table.Table` Table with IRF data. format : {"gadf-dl3"}, optional Format specification. Default is "gadf-dl3". Returns ------- irf : `IRF` IRF class. """ axes = MapAxes.from_table(table=table, format=format) axes = axes[cls.required_axes] column_name = IRF_DL3_HDU_SPECIFICATION[cls.tag]["column_name"] data = table[column_name].quantity[0].transpose() return cls( axes=axes, data=data.value, meta=table.meta, unit=data.unit, is_pointlike=gadf_is_pointlike(table.meta), fov_alignment=table.meta.get("FOVALIGN", "RADEC"), )
[docs] def to_table(self, format="gadf-dl3"): """Convert to table. Parameters ---------- format : {"gadf-dl3"}, optional Format specification. Default is "gadf-dl3". Returns ------- table : `~astropy.table.Table` IRF data table. """ table = self.axes.to_table(format=format) if format == "gadf-dl3": table.meta = self.meta.copy() spec = IRF_DL3_HDU_SPECIFICATION[self.tag] table.meta.update(spec["mandatory_keywords"]) if "FOVALIGN" in table.meta: table.meta["FOVALIGN"] = self.fov_alignment.value if self.is_pointlike: table.meta["HDUCLAS3"] = "POINT-LIKE" else: table.meta["HDUCLAS3"] = "FULL-ENCLOSURE" table[spec["column_name"]] = self.quantity.T[np.newaxis] else: raise ValueError(f"Not a valid supported format: '{format}'") return table
[docs] def to_table_hdu(self, format="gadf-dl3"): """Convert to `~astropy.io.fits.BinTableHDU`. Parameters ---------- format : {"gadf-dl3"}, optional Format specification. Default is "gadf-dl3". Returns ------- hdu : `~astropy.io.fits.BinTableHDU` IRF data table HDU. """ name = IRF_DL3_HDU_SPECIFICATION[self.tag]["extname"] return fits.BinTableHDU(self.to_table(format=format), name=name)
[docs] def to_hdulist(self, format="gadf-dl3"): """ Write the HDU list. Parameters ---------- format : {"gadf-dl3"}, optional Format specification. Default is "gadf-dl3". """ hdu = self.to_table_hdu(format=format) return fits.HDUList([fits.PrimaryHDU(), hdu])
[docs] def write(self, filename, *args, **kwargs): """Write IRF to fits. Calls `~astropy.io.fits.HDUList.writeto`, forwarding all arguments. """ self.to_hdulist().writeto(str(make_path(filename)), *args, **kwargs)
[docs] def pad(self, pad_width, axis_name, **kwargs): """Pad IRF along a given axis. Parameters ---------- pad_width : {sequence, array_like, int} Number of pixels padded to the edges of each axis. axis_name : str Axis to downsample. By default, spatial axes are padded. **kwargs : dict Keyword argument forwarded to `~numpy.pad`. Returns ------- irf : `IRF` Padded IRF. """ if np.isscalar(pad_width): pad_width = (pad_width, pad_width) idx = self.axes.index(axis_name) pad_width_np = [(0, 0)] * self.data.ndim pad_width_np[idx] = pad_width kwargs.setdefault("mode", "constant") axes = self.axes.pad(axis_name=axis_name, pad_width=pad_width) data = np.pad(self.data, pad_width=pad_width_np, **kwargs) return self.__class__( data=data, axes=axes, meta=self.meta.copy(), unit=self.unit )
[docs] def slice_by_idx(self, slices): """Slice sub IRF from IRF object. Parameters ---------- slices : dict Dictionary of axes names and `slice` object pairs. Contains one element for each non-spatial dimension. Axes not specified in the dictionary are kept unchanged. Returns ------- sliced : `IRF` Sliced IRF object. """ axes = self.axes.slice_by_idx(slices) diff = set(self.axes.names).difference(axes.names) if diff: diff_slice = {key: value for key, value in slices.items() if key in diff} raise ValueError(f"Integer indexing not supported, got {diff_slice}") slices = tuple([slices.get(ax.name, slice(None)) for ax in self.axes]) data = self.data[slices] return self.__class__(axes=axes, data=data, unit=self.unit, meta=self.meta)
[docs] def is_allclose(self, other, rtol_axes=1e-3, atol_axes=1e-6, **kwargs): """Compare two data IRFs for equivalency. Parameters ---------- other : `~gammapy.irfs.IRF` The IRF to compare against. rtol_axes : float, optional Relative tolerance for the axis comparison. Default is 1e-3. atol_axes : float, optional Absolute tolerance for the axis comparison. Default is 1e-6. **kwargs : dict Keywords passed to `numpy.allclose`. Returns ------- is_allclose : bool Whether the IRF is all close. """ if not isinstance(other, self.__class__): return TypeError(f"Cannot compare {type(self)} and {type(other)}") if self.data.shape != other.data.shape: return False axes_eq = self.axes.is_allclose(other.axes, rtol=rtol_axes, atol=atol_axes) data_eq = np.allclose(self.quantity, other.quantity, **kwargs) return axes_eq and data_eq
def __eq__(self, other): if not isinstance(other, self.__class__): return False return self.is_allclose(other=other, rtol=1e-3, rtol_axes=1e-6)
[docs] class IRFMap: """IRF map base class for DL4 instrument response functions.""" def __init__(self, irf_map, exposure_map): self._irf_map = irf_map self.exposure_map = exposure_map # TODO: only allow for limited set of additional axes? irf_map.geom.axes.assert_names(self.required_axes, allow_extra=True) @property @abc.abstractmethod def tag(self): pass @property @abc.abstractmethod def required_axes(self): pass @lazyproperty def has_single_spatial_bin(self): return self._irf_map.geom.to_image().data_shape == (1, 1) # TODO: add mask safe to IRFMap as a regular attribute and don't derive it from the data @property def mask_safe_image(self): """Mask safe for the map.""" mask = self._irf_map > (0 * self._irf_map.unit) return mask.reduce_over_axes(func=np.logical_or)
[docs] def to_region_nd_map(self, region): """Extract IRFMap in a given region or position. If a region is given a mean IRF is computed, if a position is given the IRF is interpolated. Parameters ---------- region : `~regions.SkyRegion` or `~astropy.coordinates.SkyCoord` Region or position where to get the map. Returns ------- irf : `IRFMap` IRF map with region geometry. """ if region is None: region = self._irf_map.geom.center_skydir # TODO: compute an exposure weighted mean PSF here kwargs = {"region": region, "func": np.nanmean} if "energy" in self._irf_map.geom.axes.names: kwargs["method"] = "nearest" irf_map = self._irf_map.to_region_nd_map(**kwargs) if self.exposure_map: exposure_map = self.exposure_map.to_region_nd_map(**kwargs) else: exposure_map = None return self.__class__(irf_map, exposure_map=exposure_map)
def _get_nearest_valid_position(self, position): """Get nearest valid position.""" is_valid = np.nan_to_num(self.mask_safe_image.get_by_coord(position))[0] if not is_valid and np.any(self.mask_safe_image > 0): log.warning( f"Position {position} is outside " "valid IRF map range, using nearest IRF defined within" ) position = self.mask_safe_image.mask_nearest_position(position) return position
[docs] @classmethod def from_hdulist( cls, hdulist, hdu=None, hdu_bands=None, exposure_hdu=None, exposure_hdu_bands=None, format="gadf", ): """Create from `~astropy.io.fits.HDUList`. Parameters ---------- hdulist : `~astropy.fits.HDUList` HDU list. hdu : str, optional Name or index of the HDU with the IRF map. Default is None. hdu_bands : str, optional Name or index of the HDU with the IRF map BANDS table. Default is None. exposure_hdu : str, optional Name or index of the HDU with the exposure map data. Default is None. exposure_hdu_bands : str, optional Name or index of the HDU with the exposure map BANDS table. Default is None. format : {"gadf", "gtpsf"}, optional File format. Default is "gadf". Returns ------- irf_map : `IRFMap` IRF map. """ output_class = cls if format == "gadf": if hdu is None: hdu = IRF_MAP_HDU_SPECIFICATION[cls.tag] irf_map = Map.from_hdulist( hdulist, hdu=hdu, hdu_bands=hdu_bands, format=format ) if exposure_hdu is None: exposure_hdu = IRF_MAP_HDU_SPECIFICATION[cls.tag] + "_exposure" if exposure_hdu in hdulist: exposure_map = Map.from_hdulist( hdulist, hdu=exposure_hdu, hdu_bands=exposure_hdu_bands, format=format, ) else: exposure_map = None if cls.tag == "psf_map" and "energy" in irf_map.geom.axes.names: from .psf import RecoPSFMap output_class = RecoPSFMap if cls.tag == "edisp_map" and irf_map.geom.axes[0].name == "energy": from .edisp import EDispKernelMap output_class = EDispKernelMap elif format == "gtpsf": rad_axis = MapAxis.from_table_hdu(hdulist["THETA"], format=format) table = Table.read(hdulist["PSF"]) energy_axis_true = MapAxis.from_table(table, format=format) geom_psf = RegionGeom.create(region=None, axes=[rad_axis, energy_axis_true]) psf_map = Map.from_geom(geom=geom_psf, data=table["Psf"].data, unit="sr-1") geom_exposure = geom_psf.squash("rad") exposure_map = Map.from_geom( geom=geom_exposure, data=table["Exposure"].data.reshape(geom_exposure.data_shape), unit="cm2 s", ) return cls(psf_map=psf_map, exposure_map=exposure_map) else: raise ValueError(f"Format {format} not supported") return output_class(irf_map, exposure_map)
[docs] @classmethod def read(cls, filename, format="gadf", hdu=None, checksum=False): """Read an IRF_map from file and create corresponding object. Parameters ---------- filename : str or `~pathlib.Path` File name. format : {"gadf", "gtpsf"}, optional File format. Default is "gadf". hdu : str or int HDU location. Default is None. checksum : bool If True checks both DATASUM and CHECKSUM cards in the file headers. Default is False. Returns ------- irf_map : `PSFMap`, `EDispMap` or `EDispKernelMap` IRF map. """ filename = make_path(filename) # TODO: this will test all hdus and the one specifically of interest with fits.open(filename, memmap=False, checksum=checksum) as hdulist: return cls.from_hdulist(hdulist, format=format, hdu=hdu)
[docs] def to_hdulist(self, format="gadf"): """Convert to `~astropy.io.fits.HDUList`. Parameters ---------- format : {"gadf", "gtpsf"}, optional File format. Default is "gadf". Returns ------- hdu_list : `~astropy.io.fits.HDUList` HDU list. """ if format == "gadf": hdu = IRF_MAP_HDU_SPECIFICATION[self.tag] hdulist = self._irf_map.to_hdulist(hdu=hdu, format=format) exposure_hdu = hdu + "_exposure" if self.exposure_map is not None: new_hdulist = self.exposure_map.to_hdulist( hdu=exposure_hdu, format=format ) hdulist.extend(new_hdulist[1:]) elif format == "gtpsf": if not self._irf_map.geom.is_region: raise ValueError( "Format 'gtpsf' is only supported for region geometries" ) rad_hdu = self._irf_map.geom.axes["rad"].to_table_hdu(format=format) psf_table = self._irf_map.geom.axes["energy_true"].to_table(format=format) psf_table["Exposure"] = self.exposure_map.quantity[..., 0, 0].to("cm^2 s") psf_table["Psf"] = self._irf_map.quantity[..., 0, 0].to("sr^-1") psf_hdu = fits.BinTableHDU(data=psf_table, name="PSF") hdulist = fits.HDUList([fits.PrimaryHDU(), rad_hdu, psf_hdu]) else: raise ValueError(f"Format {format} not supported") return hdulist
[docs] def write(self, filename, overwrite=False, format="gadf", checksum=False): """Write IRF map to fits. Parameters ---------- filename : str or `~pathlib.Path` Filename to write to. overwrite : bool, optional Overwrite existing file. Default is False. format : {"gadf", "gtpsf"}, optional File format. Default is "gadf". checksum : bool, optional When True adds both DATASUM and CHECKSUM cards to the headers written to the file. Default is False. """ hdulist = self.to_hdulist(format=format) hdulist.writeto(str(filename), overwrite=overwrite, checksum=checksum)
[docs] def stack(self, other, weights=None, nan_to_num=True): """Stack IRF map with another one in place. Parameters ---------- other : `~gammapy.irf.IRFMap` IRF map to be stacked with this one. weights : `~gammapy.maps.Map`, optional Map with stacking weights. Default is None. nan_to_num: bool, optional Non-finite values are replaced by zero if True. Default is True. """ if self.exposure_map is None or other.exposure_map is None: raise ValueError( f"Missing exposure map for {self.__class__.__name__}.stack" ) cutout_info = getattr(other._irf_map.geom, "cutout_info", None) if cutout_info is not None: slices = cutout_info["parent-slices"] parent_slices = Ellipsis, slices[0], slices[1] else: parent_slices = slice(None) self._irf_map.data[parent_slices] *= self.exposure_map.data[parent_slices] self._irf_map.stack( other._irf_map * other.exposure_map.data, weights=weights, nan_to_num=nan_to_num, ) # stack exposure map if weights and "energy" in weights.geom.axes.names: weights = weights.reduce( axis_name="energy", func=np.logical_or, keepdims=True ) self.exposure_map.stack( other.exposure_map, weights=weights, nan_to_num=nan_to_num ) with np.errstate(invalid="ignore"): self._irf_map.data[parent_slices] /= self.exposure_map.data[parent_slices] self._irf_map.data = np.nan_to_num(self._irf_map.data)
[docs] def copy(self): """Copy IRF map.""" return deepcopy(self)
[docs] def cutout(self, position, width, mode="trim", min_npix=3): """Cutout IRF map. Parameters ---------- position : `~astropy.coordinates.SkyCoord` Center position of the cutout region. width : tuple of `~astropy.coordinates.Angle` Angular sizes of the region in (lon, lat) in that specific order. If only one value is passed, a square region is extracted. mode : {'trim', 'partial', 'strict'}, optional Mode option for Cutout2D, for details see `~astropy.nddata.utils.Cutout2D`. Default is "trim". min_npix : bool, optional Force width to a minimmum number of pixels. Default is 3. The default is 3 pixels so interpolation is done correctly if the binning of the IRF is larger than the width of the analysis region. Returns ------- cutout : `IRFMap` Cutout IRF map. """ irf_map = self._irf_map.cutout(position, width, mode, min_npix=min_npix) if self.exposure_map: exposure_map = self.exposure_map.cutout( position, width, mode, min_npix=min_npix ) else: exposure_map = None return self.__class__(irf_map, exposure_map=exposure_map)
[docs] def downsample(self, factor, axis_name=None, weights=None): """Downsample the spatial dimension by a given factor. Parameters ---------- factor : int Downsampling factor. axis_name : str Axis to downsample. By default, spatial axes are downsampled. weights : `~gammapy.maps.Map`, optional Map with weights downsampling. Default is None. Returns ------- map : `IRFMap` Downsampled IRF map. """ irf_map = self._irf_map.downsample( factor=factor, axis_name=axis_name, preserve_counts=True, weights=weights ) if axis_name is None: exposure_map = self.exposure_map.downsample( factor=factor, preserve_counts=False ) else: exposure_map = self.exposure_map.copy() return self.__class__(irf_map, exposure_map=exposure_map)
[docs] def slice_by_idx(self, slices): """Slice sub dataset. The slicing only applies to the maps that define the corresponding axes. Parameters ---------- slices : dict Dictionary of axes names and integers or `slice` object pairs. Contains one element for each non-spatial dimension. For integer indexing the corresponding axes is dropped from the map. Axes not specified in the dictionary are kept unchanged. Returns ------- map_out : `IRFMap` Sliced IRF map object. """ irf_map = self._irf_map.slice_by_idx(slices=slices) if "energy_true" in slices and self.exposure_map: exposure_map = self.exposure_map.slice_by_idx(slices=slices) else: exposure_map = self.exposure_map return self.__class__(irf_map, exposure_map=exposure_map)